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a b s t r a c t

Incremental learning strategy based feature selection approaches can improve the efficiency of reduc-
tion algorithm used for datasets with dynamic characteristic, which has attracted increasing research
attention. Nevertheless, there is currently no work on incremental feature selection approaches for
dynamic interval-valued ordered data. Interval-valued ordered data is a generalized form of single-
valued ordered data, which is more widely used in practice. However, the endpoints of the interval
numbers are easily polluted by noise, thereby the knowledge granules are very sensitive. Motivated
by these two issues, we study incremental feature selection approaches based on a fuzzy dominance
neighborhood rough set (FDNRS) for dynamic interval-valued ordered data in this work. First, we
propose the FDNRS model for an interval-valued ordered decision system (IvODS) and investigate
its related properties. Second, a conditional entropy with robustness is proposed based on the
proposed model. This conditional entropy can measure the degree of monotonic consistency of the
IvODS, so it is used as a metric and combined with a heuristic feature selection algorithm. Finally,
two incremental feature selection algorithms are proposed on the basis of the above researches.
Experiments are performed on nine public datasets to evaluate the robustness of the proposed metric
and the performance of the incremental algorithms. Experimental results verify that the proposed
metric is robust and our incremental algorithms are effective and efficient for updating reducts in
dynamic IvODS.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

With the development of the information age, various complex
ata need to be dealt with in different fields, among which
nterval-valued data is one of the important representatives.
nterval-valued data is widely used in the real world, it is usu-
lly used to characterize inaccurate and ambiguous information,
uch as fluctuations of commodity prices [1], changes of tem-
erature [2], and the range of physiological indicators [3]. In
ulti-criteria decision analysis problems, interval-valued data

ollows a preference-ordered relation, which is called interval-
alued ordered data [4]. In practical applications, interval-valued
rdered data evolves over time, i.e., dynamic interval-valued
rdered data [5,6], which brings challenges for efficient data
ining in such data.

∗ Corresponding author at: School of Computing and Artificial Intelligence,
outhwest Jiaotong University, Chengdu 611756, PR China.

E-mail address: hmchen@swjtu.edu.cn (H. Chen).
ttps://doi.org/10.1016/j.knosys.2021.107223
950-7051/© 2021 Elsevier B.V. All rights reserved.
Feature selection is a common data dimensionality reduction
method in data mining, it can identify more relevant features and
reduce the dimension of data, thereby improving the classifica-
tion ability of the learning models [7–11]. For dynamic data, some
traditional feature selection methods have exposed the defects
of low computational efficiency. To improve efficiency, feature
selection algorithms with incremental technology have attracted
increasing research attention [12–16]. Nevertheless, up to now,
there is no incremental feature selection method for dynamic
interval-valued ordered data. In order to further complete the
research in this field, we study the feature selection method with
incremental technology on dynamic interval-valued ordered data.

Rough set theory (RST) is a granular computing tool, which
is widely used to deal with uncertain and vague information.
Interval-valued data is called interval-valued information system
(IvIS) in RST. In recent years, some extended rough set models for
IvIS have been successively proposed, as shown in Table 1.
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Table 1
The review of some extended rough set models for IvIS.
Year Authors Extended models Reference

2008 Gong et al. Rough set model of interval-valued fuzzy information system [17]
2008 Sun et al. Fuzzy rough set model of interval-valued fuzzy information system [18]
2008 Leung et al. Rough set approach for the discovery of classification rules in IvIS [19]
2008 Qian et al. Dominance-based rough set approach of ordered IvIS [4]
2009 Yang et al. Dominance-based rough set approach of incomplete ordered IvIS [20]
2013 Zhang et al. Variable-precision dominance-based rough set approach of ordered IvIS [21]
2015 Yang et al. α-dominance relation based rough set model of ordered IvIS [22]
2017 Dai et al. Probability approach based dominance fuzzy rough set model of IvODS [23]
2018 Dai et al. Dominance-based fuzzy rough set model of incomplete ordered IvIS [24]
Although some of the dominance-based rough set approach
DRSA) models have been extended to IvODS in the above re-
earches, these models cannot describe the preference-ordered
elation between objects in IvODS both qualitatively and quan-
itatively. The fuzzy preference based rough sets model [25],
roposed by Hu et al. can make up for this deficiency. Therefore, it
s very meaningful to extend this model to IvODS. But this model
s not robust, because it does not consider that the boundaries
f interval numbers are easily disturbed by noise, then cause
he perturbation of the endpoint values. This shortcoming makes
he knowledge granule lack of fault tolerance (flexibility), thus
roviding decision-makers with wrong information, which may
ventually lead to wrong decisions. Inspired by this, we introduce
he idea of neighborhood into the fuzzy preference based rough
ets model, and propose a new model to make the knowledge
ranule robust, i.e., the FDNRS model of IvODS.
Uncertainty metric is an important research content of RST. In

ecent years, RST-based uncertainty metrics for interval-valued
ata have attracted the attention of many scholars. Some repre-
entative works are shown in Table 2. However, these metrics
o not take into account the preference-ordered relation of be-
ween objects in IvODS. For ordered data, Hu et al. proposed rank
onditional entropy and fuzzy rank conditional entropy [26], and
hen they were applied to feature selection [27] and decision
rees [28] for monotonic classification tasks. Inspired by this, we
ntroduce a FDNRS based conditional entropy (called fuzzy domi-
ance neighborhood conditional entropy (FDNCE)) to evaluate the
onsistency degree of the ordering of samples under features and
ecisions in IvODS. In this study, the FDNCE is used as a feature
valuation index for feature selection in IvODS.
Feature selection is also called attribute reduction in RST.

ome RST-based attribute reduction methods have been extended
r further improved for interval-valued data, as shown in Ta-
le 3. However, the above attribute reduction method has two
nsufficiencies. On the one hand, these methods do not consider
nterval-valued data with a preference-ordered relation. On the
ther hand, for interval-valued data with dynamic characteris-
ics, these methods expose the disadvantage of high time cost.
ecause these attribute reduction methods must be executed
epeatedly when new data arrives or old data is removed, which
auses a lot of unnecessary calculations. Therefore, it is very
eaningful to study an efficient attribute reduction method that
an be applied to data with dynamic interval-valued ordered data.
The feature selection with incremental mechanism can effi-

iently extract the necessary attributes from dynamic datasets.
n recent years, the research on incremental feature selection has
ttracted the attention of many scholars. Some recent research
orks are presented in Table 4. Although scholars have done
lot of works on the research of incremental feature selection
ethods, these existing methods are not suitable for dynamic

nterval-valued ordered data. This flaw inspires our study.
In this study, we propose incremental feature selection meth-

ds based on FDNRS model for dynamic interval-valued ordered
atasets with time-evolving objects. The major contributions of

his study are as follows.

2

• We propose a new rough set model FDNRS for IvODS, and
give reasonable explanations of the approximate operators
of this model. Moreover, the relevant properties of this
model are presented and proved.
• We define a robust uncertainty metric FDNCE based on

FDNRS model, which is used as an uncertainty metric to
evaluate the degree of ranking consistency of objects in
IvODS. This metric is proven to be non-monotonic, and then
is combined with the heuristic feature selection strategy.
• Based on the above researches, we propose two incremental

feature selection algorithms when a group objects are added
to or deleted from an IvODS, respectively.
• Comparison experiments are performed on public datasets,

and the results indicate that the robustness of the proposed
metric and the effectiveness and efficiency of the proposed
incremental algorithms.

The remaining of the paper is organized as follows. Section 2
introduces the related knowledge. In Section 3, the FDNRS model
of IvODS is proposed, and its relevant properties are investigated.
Section 4 proposes FDNCE and a FDNCE-based heuristic non-
monotonic feature selection algorithm for IvODS. In Section 5,
two incremental feature selection methods are introduced. The
results and analysis of our experiments are reported in Section 6.
Finally, Section 7 summarizes the study and outlines the further
work.

2. Preliminaries

In this section, some basic concepts are introduced, which can
be found in literatures [4,54].

2.1. Interval-valued ordered decision system

Definition 2.1. Let S = ⟨U, A ∪ {d}, V ⟩ be a decision system,
where U = {x1, x2, . . . , xn} is a non-empty finite set of objects; A
is a nonempty finite set of conditional attributes, d is a decision
attribute; V =

⋃
Vak (ak ∈ A ∪ {d}), Vak = {v(xi, ak)|∀xi ∈ U},

v(xi, ak) is the value of xi under attribute ak, which is also denoted
by vik.

Definition 2.2 ([54]). Let IS = ⟨U, A∪{d}, V ⟩ be an interval-valued
decision system, for any xi ∈ U , ak ∈ A, v(xi, ak) is an interval-
valued number, i.e., v(xi, ak) = [vl

ak (xi), v
r
ak (xi)] = {t|v

l
ak (xi) ≤ t ≤

vr
ak (xi), v

l
ak (xi), v

r
ak (xi) ∈ R}, vl

ak (xi) and vr
ak (xi) are called the left

and right boundaries of v(xi, ak), respectively, and they can also
be denoted by vl

ik and vr
ik. Furthermore, for any xi ∈ U , v(xi, d) is

a single value under decision attribute d.

In an interval-valued decision system, for any xi ∈ U , ak ∈ A,
v(xi, ak) degenerates to a single value when vl

ak (xi) = vr
ak (xi).

Therefore, a single-valued decision system is a special form of the
interval-valued decision system.
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Table 2
The review of some RST-based uncertainty metrics for IvIS.
Year Authors Uncertainty metrics Reference

2012 Dai et al. Possible degree based conditional entropy for interval-valued decision systems [29]
2013 Dai et al. Similarity relation based accuracy and roughness for IvIS [30]
2013 Huang et al. Information entropy for interval-valued intuitionistic fuzzy information

systems
[31]

2017 Dai et al. Accuracy, roughness, and approximation accuracy based on α-weak similarity
for incomplete IvIS

[32]

2019 Xie et al. θ-information granulation, θ-information amount, θ-rough entropy, and
θ-information entropy for IvIS

[33]
Table 3
The review of some RST-based attribute reduction methods for IvIS.
Year Authors Attribute reduction methods Reference

2014 Zhang et al. Confidence preserved based attribute reduction method for IvIS [34]
2016 Dai et al. Information entropy based attribute reduction method for IvIS [35]
2019 Shu et al. θ-conditional entropy based attribute reduction method for incomplete IvIS [36]
2020 Liu et al. α-mutual information based unsupervised attribute reduction method for IvIS [37]
2020 Dai et al. Kernel density estimation based attribute reduction approach for IvIS [38]
Table 4
The review of some incremental feature selection methods.
Year Authors Incremental feature selection methods Reference

2014 Liang et al. Incremental feature selection based on information entropy for dynamic data with samples change [39]
2015 Zeng et al. Incremental feature selection based on fuzzy rough set for dynamic hybrid information systems [40]
2017 Lang et al. Incremental updating reducts approaches for dynamic covering information systems [41]
2018 Das et al. Incremental feature selection for classification using RST-based genetic algorithm [42]
2018 Yang et al. Fuzzy rough sets based incremental attribute reduction algorithms by active sample selection strategy [43]
2018 Wei et al. Discernibility matrix based incremental attribute reduction method when attribute values change [44]
2019 Shu et al. Two incremental feature selection methods when multiple objects are added or deleted from data [16]
2019 Zhang et al. Information entropy based incremental feature selection approach using the active sample selection strategy

under the framework of fuzzy rough set theory
[45]

2019 Wei et al. Accelerated incremental attribute reduction method by combining the method of compressing information
table with the incremental technology

[46]

2019 Cai et al. Two incremental methods for attribute reduction from the perspective of the coarsening and refining
covering granularity

[47]

2020 Ni et al. Fuzzy rough set based incremental feature selection approach by introducing a key instance set containing
representative instances

[48]

2020 Shu et al. Incremental attribute reduction method based on neighborhood rough set for dynamic hybrid data [49]
2020 Yang et al. Incremental attribute reduction approach for heterogeneous data with the ordered arrival of objects [50]
2020 Liu et al. Discernibility matrix based incremental feature selection method for fused information system [51]
2020 Chen et al. Incremental attribute reduction approach using discernible relations when multiple attributes are added

simultaneously
[52]

2020 Dong et al. Incremental update reduction method when multiple objects and attributes are added to an information table
simultaneously

[53]
t
d

D

D

Definition 2.3 ([4]). Let IS⪯ = ⟨U, A∪{d}, V ⟩ be an IvODS, for any
ak ∈ A is a criterion, Vak is completely pre-ordered by the relation
⪯ak : ∀xi, xj ∈ U , xi ⪯ak xj ⇔ v(xi, ak) ≤ v(xj, ak) (i.e. an increasing
preference) or xi ⪯ak xj ⇔ v(xi, ak) ≥ v(xj, ak) (i.e. a decreasing
preference).

In real-world applications, decision makers usually know the
order of criterion values within their domain or prior knowledge.
Such as, for the test score and operating profit, the higher the bet-
ter. For risk assessment, the lower the better with all other things
being equal. For simplicity and without any loss of generality, the
following we only consider criteria with increasing preferences.

2.2. Dominance-based rough set approach to IvODS

Definition 2.4 ([4]). Given an IvODS IS⪯ = ⟨U, A∪{d}, V ⟩, ∀B ⊆ A,
the dominance relation D⪯B is defined as

D⪯B = {(xi, xj) ∈ U ×U |vl
ak (xi) ≤ vl

ak (xj), v
r
ak (xi) ≤ vr

ak (xj),∀ak ∈ B}.

(1)

From Eq. (1), we easily find that the dominance relation D⪯B is
reflexive, asymmetric, and transitive. Moreover, the dominance
relation on decision attribute d is denoted as D⪯d = {(xi, xj) ∈
U × U |v(xi, d) ≤ v(xj, d)}.
3

Definition 2.5 ([4]). Given an IvODS IS⪯ = ⟨U, A∪{d}, V ⟩, ∀B ⊆ A,
he dominating and dominated sets of xi ∈ U in term of B are
efined as
+

B (xi) = {xj ∈ U |xiD
⪯

B xj}; (2)
−

B (xi) = {xj ∈ U |xjD
⪯

B xi}, (3)

which are call knowledge granules induced by D⪯B .

Property 2.1 ([4]). For any B1, B2 ⊆ A and ∀x ∈ U, the following
properties hold.

(1) If B1 ⊆ B2, then D+B2 (x) ⊆ D+B1 (x) and D−B2 (x) ⊆ D−B1 (x);
(2) D+B1 (x)∩ D+B2 (x) = D+B1∪B2 (x) and D−B1 (x)∩ D−B2 (x) = D−B1∪B2 (x).

In IvODS, d is a decision attribute, U/d = {Clt |t ∈ {1, . . . , T }}
(T ≤ |U |), where for each Clt be an equivalence class, and ClT ≻
. . . ≻ Clt ≻ . . . ≻ Cl1. The upward and downward unions in DRSA
are expressed as Cl⪰t =

⋃
Clt ′ (t ′ ≥ t) and Cl⪯t =

⋃
Clt ′ (t ′ ≤ t),

where t, t ′ ∈ {1, . . . , T }. If x ∈ Cl⪰t , then the decision of x cannot
be worse than Clt ; if x ∈ Cl⪯t , then the decision of x cannot be
better than Clt . Note that Cl⪯0 = Cl⪰T+1 = ∅ and Cl⪯T = Cl⪰1 = U .

Definition 2.6 ([54]). Given an IvODS IS⪯ = ⟨U, A∪ {d}, V ⟩, ∀B ⊆
A and t ∈ {1, . . . , T }, the lower and upper approximations of
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n interval-valued ordered decision system.
U a1 a2 a3 a4 d

x1 [0.28, 0.30] [0.33, 0.40] [0.54, 0.66] [0.53, 0.65] 1
x2 [0.27, 0.29] [0.49, 0.60] [0.36, 0.44] [0.41, 0.50] 3
x3 [0.40, 0.43] [0.41, 0.50] [0.27, 0.33] 0 2
x4 [0.41, 0.50] [0.08, 0.10] [0.20, 0.24] [0.41, 0.50] 3
x5 [0.42, 0.44] [0.16, 0.20] 0 [0.16, 0.20] 1
x6 [0.55, 0.60] [0.82, 1.00] [0.72, 0.88] [0.82, 1.00] 2
x7 [0.78, 0.81] [0.65, 0.80] [0.36, 0.44] [0.08, 0.10] 1

the upward union Cl⪰t and downward union Cl⪯t are respectively
efined as
⪯

B (Cl
⪰

t ) = {x ∈ U |D+B (x) ⊆ Cl⪰t }, (4)

D⪯B (Cl
⪰

t ) = {x ∈ U |D−B (x) ∩ Cl⪰t ̸= ∅}; (5)

D⪯B (Cl
⪯

t ) = {x ∈ U |D−B (x) ⊆ Cl⪯t }, (6)

D⪯B (Cl
⪯

t ) = {x ∈ U |D+B (x) ∩ Cl⪯t ̸= ∅}. (7)

he boundary regions of Cl⪰t and Cl⪯t are defined as

nB(Cl
⪰

t ) =D
⪯

B (Cl
⪰

t )− D⪯B (Cl
⪰

t ), (8)

BnB(Cl
⪯

t ) =D
⪯

B (Cl
⪯

t )− D⪯B (Cl
⪯

t ). (9)

In addition, D⪯B (∅) = D⪯B (∅) = ∅, D
⪯

B (U) = D⪯B (U) = U , and
BnB(∅) = BnB(U) = ∅.

Property 2.2 ([54]). For any B ⊆ A, the approximations of Cl⪰t and
l⪯t (t ∈ {1, . . . , T }) have the following properties.

(1) D⪯B (Cl
⪰

t ) ⊆ Cl⪰t ⊆ D⪯B (Cl
⪰

t ) and D⪯B (Cl
⪯

t ) ⊆ Cl⪯t ⊆ D⪯B (Cl
⪯

t ).

(2) D⪯B (Cl
⪰

t ) = U − D⪯B (Cl
⪯

t−1) and D⪯B (Cl
⪯

t ) = U − D⪯B (Cl
⪰

t+1).
(3) BnB(Cl

⪰

t ) = BnB(Cl
⪯

t−1).

The following, we give an example to illustrate these defini-
ions and properties mentioned above.

xample 1. Table 5 shows an IvODS, where
= {x1, x2, x3, x4, x5, x6, x7}, A = {a1, a2, a3, a4}, and d is

ecision attribute.
According to Definition 2.5, the dominating and dominated

ets of each object are calculated as D+A (x1) = {x1, x6}, D
+

A (x2) =
x2, x6}, D+A (x3) = {x3, x6, x7}, D

+

A (x4) = {x4, x6}, D
+

A (x5) = {x5, x6},
D+A (x6) = {x6}, D

+

A (x7) = {x7}; D−A (x1) = {x1}, D
−

A (x2) = {x2},
D−A (x3) = {x3}, D−A (x4) = {x4}, D−A (x5) = {x5}, D−A (x6) =
{x1, x2, x3, x4, x5, x6}, D−A (x7) = {x3, x7}. Then, the upward and
downward unions are Cl⪰1 = U , Cl⪰2 = {x2, x3, x4, x6}, Cl

⪰

3 =

{x2, x4}; Cl⪯1 = {x1, x5, x7}, Cl
⪯

2 = {x1, x3, x5, x6, x7}, Cl
⪯

3 = U .
According to Definition 2.6, the approximations of the upward
unions are calculated as D⪯A (Cl

⪰

1 ) = U , D⪯A (Cl
⪰

2 ) = {x2, x4, x6},

D⪯A (Cl
⪰

3 ) = ∅; D⪯A (Cl
⪰

1 ) = U , D⪯A (Cl
⪰

2 ) = {x2, x3, x4, x6, x7},

D⪯A (Cl
⪰

3 ) = {x2, x4, x6}. The approximations of the downward
unions are calculated as D⪯A (Cl

⪯

1 ) = {x1, x5}, D
⪯

A (Cl
⪯

2 ) = {x1, x3, x5,

x7}, D⪯A (Cl
⪯

3 ) = U; D⪯A (Cl
⪯

1 ) = {x1, x3, x5, x7}, D⪯A (Cl
⪯

2 ) = U ,

D⪯A (Cl
⪯

3 ) = U . The boundary regions of the upward and downward
unions are calculated as BnA(Cl

⪰

1 ) = ∅, BnA(Cl
⪰

2 ) = {x3, x7},
BnA(Cl

⪰

3 ) = {x2, x4, x6}; BnA(Cl
⪯

1 ) = {x3, x7}, BnA(Cl
⪯

2 ) = {x2, x4, x6},
BnA(Cl

⪯

3 ) = ∅. Next, we verify Property 2.2 as follows. Let t = 2,
(1) D⪯A (Cl

⪰

2 ) ⊆ Cl⪰2 ⊆ D⪯A (Cl
⪰

2 ) and D⪯A (Cl
⪯

2 ) ⊆ Cl⪯2 ⊆ D⪯A (Cl
⪯

2 );

(2) D⪯A (Cl
⪰

2 ) = U − D⪯A (Cl
⪯

1 ) and D⪯A (Cl
⪯

2 ) = U − D⪯A (Cl
⪰

3 ); (3)
n (Cl⪰) = Bn (Cl⪯).
A 2 A 1

4

The DRSA for interval-valued ordered data [4,54] is an impor-
tant extension model of the classic DRSA [55]. It is worth noting
that the extended model only qualitatively considers the pref-
erence relation (i.e., Definition 2.4) between interval numbers,
which is a boolean relation. However, in practical applications,
decision makers (or users) usually need to not only qualitatively
consider the preference relation between samples, but also quan-
titatively consider the degree of preference between samples.
Consequently, the extended model needs to be further improved
to make up for its shortcomings. After research, we found that
the fuzzy set theory can make up for this defect, because it
can quantify the degree of uncertainty of the concept, which
meets the requirements of practical application. As pointed out
by Zadeh [56], in human reasoning and concept formation, the
granules used are fuzzy rather than Boolean. Therefore, we intro-
duce the idea of fuzzy set into DRSA based on IvODS, which is
necessary and meaningful.

3. Fuzzy dominance neighborhood rough set to IvODS

In this section, we propose a new model to IvODS, called
FDNRS model. This model qualitatively and quantitatively con-
siders the preference-ordered relation between objects in IvODS.
Not only that, the proposed model also combines the idea of
neighborhood to avoid the influence of noise for knowledge. The
relevant definitions and properties are introduced as follow.

3.1. Fuzzy dominance neighborhood relation and fuzzy knowledge
granules

The fuzzy dominance degree is firstly defined to describe
the preference relation between interval numbers more pre-
cisely. Then, we introduce the idea of neighborhood, and propose
the fuzzy dominance neighborhood relation between objects in
IvODS. Final, the fuzzy knowledge granules of IvODS induced by
fuzzy dominance neighborhood relation are introduced.

The following, we review some basic knowledge used in this
subsection on fuzzy set theory [57].

Let U = {x1, x2, . . . , xn}, if A is a map of U to [0, 1], which
s A : U → [0, 1], then A is called the fuzzy set on U . For
ny xi ∈ U , A(xi) is called the membership function of A, or
he membership of xi for A. The fuzzy set is denoted as A =
A(x1)
x1
+

A(x2)
x2
+· · ·+

A(xn)
xn

or A =
∑n

i=1
A(xi)
xi

. Note that a crisp set
can be regarded as a special fuzzy set, it can also be denoted as
=

∑n
i=1

A(xi)
xi

, where ∀A(xi) ∈ {0, 1}.
Let A, B are two fuzzy sets, for any x ∈ U , some operations of

uzzy set are defined as (1) A = B⇔ A(x) = B(x); (2) A ⊆ B⇔
(x) ≤ B(x); (3) (A ∪ B)(x) = max{A(x),B(x)} = A(x) ∨ B(x); (4)
A∩B)(x) = min{A(x),B(x)} = A(x)∧B(x); (5) |A| =

∑n
i=1 A(xi);

6) ∅ is also a fuzzy set, ∅(x) = 0.

efinition 3.1. Given an IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, ∀ak ∈ A
nd xi, xj ∈ U , the fuzzy dominance degree between xi and xj on

ak is defined as

≺

ak (xi, xj) =
1
2
(LD≺ak (xi, xj)+RD≺ak (xi, xj)), (10)

where LD≺ak (xi, xj) =
1

1+e
−p(vlak

(xj)−vlak
(xi))

is called the left fuzzy

ominance degree, RD≺ak (xi, xj) =
1

1+e
−p(vrak

(xj)−vrak
(xi))

is called the

ight fuzzy dominance degree, and p is a positive constant.

For convenience, D≺ak (xi, xj), LD
≺
ak (xi, xj), and RD≺ak (xi, xj) can

e simplified to D≺ak(i,j) , LD
≺ak
(i,j) , and RD≺ak(i,j) , respectively. The LD≺ak(i,j)

ndicates the extent of the left boundary of xj better than that
f x on a . Similarly, the RD≺ak indicates the extent of the
i k (i,j)
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right boundary of xj better than that of xi on ak. The values of
fuzzy dominance degree embody the preference degree between
interval numbers.

From Definition 3.1, it is easy to find that the characteristics
of the calculation formula of LD≺ak(i,j) as follows. If vl

ak (xj) > vl
ak (xi),

then 0.5 < LD≺ak(i,j) < 1; if vl
ak (xj) = vl

ak (xi), then LD≺ak(i,j) = 0.5;
if vl

ak (xj) < vl
ak (xi), then 0 < LD≺ak(i,j) < 0.5. The calculation

formula of RD≺ak(i,j) has the same characteristics. Fig. 1 shows the
distributions of left and right fuzzy dominance degrees among
objects on attribute a1 in Table 5.

From Fig. 1, we can easily find that the values of left (right)
fuzzy dominance degree in the area between α and β are very
close to 0.5. This indicates that the left (right) boundary of these
objects under attribute a1 can be regarded as no difference, be-
cause this case may be caused by noise. To avoid the influence of
noise, we draw on the idea of neighborhood, and then define a
fuzzy dominance neighborhood relation in IvODS.

Definition 3.2. Given an IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, ∀ak ∈
B ⊆ A and xi, xj ∈ U , the fuzzy dominance neighborhood relation
between xi and xj on ak is defined as

N≺ak (xi, xj)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.5, (β ≤ LD≺ak(i,j) ≤ α) ∧ (β ≤ RD≺ak(i,j) ≤ α);
1
2 (0.5+RD≺ak(i,j) ), (β ≤ LD≺ak(i,j) ≤ α) ∧ ((RD≺ak(i,j) < β) ∨ (RD≺ak(i,j) > α));
1
2 (LD≺ak(i,j) + 0.5), ((LD≺ak(i,j) < β) ∨ (LD≺ak(i,j) > α)) ∧ (β ≤ RD≺ak(i,j) ≤ α);

D≺ak(i,j) , otherwise,

(11)

here β ∈ [0.4, 0.5), α ∈ (0.5, 0.6]. Moreover, the fuzzy
ominance neighborhood relation on attribute subset B is defined
s
≺

B (xi, xj) = min
ak∈B

N≺ak (xi, xj). (12)

Analogously, N≺B (xi, xj) can be simplified to N≺B(i,j), which can
erive a fuzzy dominance neighborhood relation matrix, i.e., Ñ≺BU
[N≺B(i,j)]n×n.

efinition 3.3. Given an IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, ∀B ⊆
, the fuzzy dominating neighborhood set and fuzzy dominated
eighborhood set of xi ∈ U in term of B are defined as

+

B (xi) =
N≺B(i,1)

+
N≺B(i,2)

+ · · · +
N≺B(i,n)
; (13)
x1 x2 xn
5

N−B (xi) =
N≺B(1,i)

x1
+

N≺B(2,i)

x2
+ · · · +

N≺B(n,i)

xn
, (14)

hich are called the fuzzy knowledge granules induced by N≺B(i,j).

Obviously, N+B (xi) and N−B (xi) are two fuzzy sets, then
+

B (xi)(xj) = N≺B(i,j), |N
+

B (xi)| =
∑n

j=1 N
≺B
(i,j), N

−

B (xi)(xj) = N≺B(j,i), and
N−B (xi)| =

∑n
j=1 N

≺B
(j,i).

roperty 3.1. For any B1, B2 ⊆ A and ∀xi ∈ U, the following
roperties hold.

(1) If B1 ⊆ B2, then N+B2 (xi) ⊆ N+B1 (xi) and N−B2 (xi) ⊆ N−B1 (xi).
(2) N+B1 (xi) ∩ N+B2 (xi) = N+B1∪B2 (xi) and N−B1 (xi) ∩ N−B2 (xi) =

N−B1∪B2 (xi).

roof. (1) For any xj ∈ U , known B1 ⊆ B2, according to
efinition 3.2, we have N≺B2 (xi, xj) = N≺B1∪(B2−B1)(xi, xj) =
in{N≺B1 (xi, xj),N

≺

B2−B1
(xi, xj)} ≤ N≺B1 (xi, xj), i.e., N≺B2 (xi, xj) ≤

N≺B1 (xi, xj). Then, according to Definition 3.3, we can naturally
determine that N+B2 (xi)(xj) ≤ N+B1 (xi)(xj) hold. Thus, we can obtain
N+B2 (xi) ⊆ N+B1 (xi). Analogously, the N−B2 (xi) ⊆ N−B1 (xi) can be
proved. (2) It can be proved immediately based on Definitions 3.2
and 3.3. □

Property 3.1 shows that fuzzy knowledge granules based on
fuzzy dominance neighborhood relation are monotonic.

3.2. Approximations of FDNRS

In this subsection, the approximations of the upward and
downward unions are defined by comprehensively considering
fuzzy dominance neighborhood relation in IvODS. Then, some
related properties are presented and proved.

Definition 3.4. Given an IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, ∀B ⊆ A
and t ∈ {1, . . . , T }, the fuzzy lower and upper approximations
of the upward union Cl⪰t and downward union Cl⪯t under B are
respectively defined as

N≺B (Cl⪰t )(xi) = inf
xj∈U

max(1− N+B (xi)(xj), Cl
⪰

t (xj)), (15)

N≺B (Cl⪰t )(xi) = sup
xj∈U

min(N−B (xi)(xj), Cl
⪰

t (xj)); (16)

≺

B (Cl⪯t )(xi) = inf max(1− N−B (xi)(xj), Cl
⪯

t (xj)), (17)

xj∈U
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N≺B (Cl⪯t )(xi) = sup
xj∈U

min(N+B (xi)(xj), Cl
⪯

t (xj)). (18)

Next, we simplify the four fuzzy approximation operators in
efinition 3.4.

• For Eq. (15), xj ∈ U can be divided into two cases, i.e., xj ∈
Cl⪰t and xj /∈ Cl⪰t (xj ∈ Cl⪯t−1). If xj ∈ Cl⪰t , then Cl⪰t (xj) = 1. Due
to 1−N+B (xi)(xj) ≤ 1, we have max(1−N+B (xi)(xj), Cl

⪰

t (xj)) =
1; If xj /∈ Cl⪰t , then Cl⪰t (xj) = 0. Due to 1−N+B (xi)(xj) ≥ 0, we
have max(1−N+B (xi)(xj), Cl

⪰

t (xj)) = 1−N+B (xi)(xj). Obviously,
1 − N+B (xi)(xj) ≤ 1, so we can easily get N≺B (Cl⪰t )(xi) =
infxj /∈Cl⪰t 1− N+B (xi)(xj) (N≺B (Cl⪰t )(xi) =
infxj∈Cl⪯t−1 1− N+B (xi)(xj)).

• For Eq. (16), xj ∈ U can be divided into two cases, i.e., xj ∈
Cl⪰t and xj /∈ Cl⪰t . If xj ∈ Cl⪰t , then Cl⪰t (xj) = 1. Because
N−B (xi)(xj) ≤ 1, we can get min(N−B (xi)(xj), Cl

⪰

t (xj)) =
N−B (xi)(xj). If xj /∈ Cl⪰t , then Cl⪰t (xj) = 0. Because N−B (xi)(xj) ≥
0, we can get min(N−B (xi)(xj), Cl

⪰

t (xj)) = 0. Obviously,
N−B (xi)(xj) ≥ 0, so we can easily get N≺B (Cl⪰t )(xi) = supxj∈Cl

⪰

t
N−B (xi)(xj).

imilarly, we can also simplify Eqs. (17) and (18). The following
e give the simplified forms of these four fuzzy approximation
perators respectively.
≺

B (Cl⪰t )(xi) = inf
xj /∈Cl

⪰

t

1− N+B (xi)(xj), (19)

N≺B (Cl⪰t )(xi) = sup
xj∈Cl

⪰

t

N−B (xi)(xj); (20)

≺

B (Cl⪯t )(xi) = inf
xj /∈Cl

⪯

t

1− N−B (xi)(xj), (21)

N≺B (Cl⪯t )(xi) = sup
xj∈Cl

⪯

t

N+B (xi)(xj). (22)

ubsequently, we give the reasonable explanations of these four
pproximation operators.

• From Eq. (19), we can intuitively find that for any xi ∈ U ,
the membership of xi to fuzzy set N≺B (Cl⪰t ) depends on the
best object that does not belong to class Cl⪰t . The greater
the degree that this object is better than xi, the smaller
the membership of xi to the fuzzy set N≺B (Cl⪰t ), and vice
versa. From a semantic perspective, N≺B (Cl⪰t )(xi) reflects the
degree to which object xi must belong to class Cl⪰t . That
is, the greater the magnitude of the best object in (Cl⪰t )c
is better than xi, the smaller the membership of xi to class
Cl⪰t . For example, when xj (xj ∈ (Cl⪰t )c) is better than xi
(i.e., N+B (xi)(xj) > 0.5), if xi ∈ Cl⪰t , then the decision-
making of xi violates the monotonic consistency principle,
so N≺B (Cl⪰t )(xi) < 0.5 is inevitable. On the contrary, if the
objects that do not belong to class Cl⪰t are much smaller
than xi, then xi must belong to class Cl⪰t to a large extent.
In addition, Eq. (21) can be interpreted similarly. There-
fore, the fuzzy lower approximations follow the monotonic
consistency principle.
• From Eq. (20), we can intuitively find that for any xi ∈ U , the

membership of xi to fuzzy set N≺B (Cl⪰t ) depends on the worst
object that belongs to class Cl⪰t . The greater the degree that
xi is better than this object, the greater the membership of
xi to the fuzzy set N≺B (Cl⪰t ), and vice versa. From a semantic
perspective, N≺B (Cl⪰t )(xi) reflects the degree to which object
xi may belong to class Cl⪰t . In other words, if xi is much
larger than the objects that belong to class Cl⪰t , then xi may
belong to class Cl⪰t to a large extent. Moreover, Eq. (22) can
be interpreted similarly.
6

The above explanation is consistent with our intuition. There-
fore, these four fuzzy approximation operators are reasonable.
To facilitate understanding, subsequently, we use an example to
demonstrate the calculation of fuzzy knowledge granules and
approximations in FDNRS.

Example 2. Continuing from Example 1. According to Eqs. (13)
and (14), the fuzzy dominating neighborhood set and fuzzy dom-
inated neighborhood set of each object are calculated as
N+A (x1) = 0.5000

x1
+

0.1208
x2
+

0.0032
x3
+

0.0235
x4
+

0.0029
x5
+

0.8792
x6
+

0.0075
x7

,
N−A (x1) = 0.5000

x1
+

0.1436
x2
+

0.2228
x3
+

0.1667
x4
+

0.1978
x5
+

0.0049
x6
+

0.0064
x7

,
N+A (x2) = 0.1436

x1
+

0.5000
x2
+

0.0115
x3
+

0.0115
x4
+

0.0194
x5
+

0.9498
x6
+

0.0268
x7

,
N−A (x2) = 0.1208

x1
+

0.5000
x2
+

0.2060
x3
+

0.1535
x4
+

0.1824
x5
+

0.0115
x6
+

0.0058
x7

,
N+A (x3) = 0.2228

x1
+

0.2060
x2
+

0.5000
x3
+

0.0268
x4
+

0.0493
x5
+

0.8316
x6
+

0.7105
x7

,
N−A (x3) = 0.0032

x1
+

0.0115
x2
+

0.5000
x3
+

0.0115
x4
+

0.1436
x5
+

0.0002
x6
+

0.0219
x7

,
N+A (x4) = 0.1667

x1
+

0.1535
x2
+

0.0115
x3
+

0.5000
x4
+

0.0616
x5
+

0.7666
x6
+

0.0268
x7

,
N−A (x4) = 0.0235

x1
+

0.0115
x2
+

0.0268
x3
+

0.5000
x4
+

0.2895
x5
+

0.0004
x6
+

0.0021
x7

,
N+A (x5) = 0.1978

x1
+

0.1824
x2
+

0.1436
x3
+

0.2895
x4
+

0.5000
x5
+

0.8089
x6
+

0.2895
x7

,
N−A (x5) = 0.0029

x1
+

0.0194
x2
+

0.0493
x3
+

0.0616
x4
+

0.5000
x5
+

0.0004
x6
+

0.0049
x7

,
N+A (x6) = 0.0049

x1
+

0.0115
x2
+

0.0002
x3
+

0.0004
x4
+

0.0004
x5
+

0.5000
x6
+

0.0004
x7

,
N−A (x6) = 0.8792

x1
+

0.9498
x2
+

0.8316
x3
+

0.7666
x4
+

0.8089
x5
+

0.5000
x6
+

0.1001
x7

,
N+A (x7) = 0.0064

x1
+

0.0058
x2
+

0.0219
x3
+

0.0021
x4
+

0.0049
x5
+

0.1001
x6
+

0.5000
x7

,
N−A (x7) = 0.0075

x1
+

0.0268
x2
+

0.7105
x3
+

0.0268
x4
+

0.2895
x5
+

0.0004
x6
+

0.5000
x7

.
Then, according to Definition 3.4, the fuzzy lower and upper

approximations of the upward and downward unions are calcu-
lated as
N≺B (Cl⪰1 ) =

1.0000
x1
+

1.0000
x2
+

1.0000
x3
+

1.0000
x4
+

1.0000
x5
+

1.0000
x6
+

1.0000
x7

,
N≺B (Cl⪰1 ) =

0.5000
x1
+

0.5000
x2
+

0.5000
x3
+

0.5000
x4
+

0.5000
x5
+

0.9498
x6
+

0.7105
x7

,
N≺B (Cl⪯1 ) =

0.7772
x1
+

0.5000
x2
+

0.5000
x3
+

0.5000
x4
+

0.9384
x5
+

0.0502
x6
+

0.2895
x7

,
N≺B (Cl⪯1 ) =

0.5000
x1
+

0.1436
x2
+

0.7105
x3
+

0.1667
x4
+

0.5000
x5
+

0.0049
x6
+

0.5000
x7

,
N≺B (Cl⪰2 ) =

0.5000
x1
+

0.8564
x2
+

0.2895
x3
+

0.8333
x4
+

0.5000
x5
+

0.9951
x6
+

0.5000
x7

,
N≺B (Cl⪰2 ) =

0.2228
x1
+

0.5000
x2
+

0.5000
x3
+

0.5000
x4
+

0.0616
x5
+

0.9498
x6
+

0.7105
x7

,
N≺B (Cl⪯2 ) =

0.8333
x1
+

0.5000
x2
+

0.9885
x3
+

0.5000
x4
+

0.9384
x5
+

0.0502
x6
+

0.9732
x7

,
N≺B (Cl⪯2 ) =

0.8792
x1
+

0.9498
x2
+

0.8316
x3
+

0.7666
x4
+

0.8089
x5
+

0.5000
x6
+

0.5000
x7

,
N≺B (Cl⪰3 ) =

0.1208
x1
+

0.0502
x2
+

0.1684
x3
+

0.2334
x4
+

0.1911
x5
+

0.5000
x6
+

0.5000
x7

,
N≺B (Cl⪰3 ) =

0.1667
x1
+

0.5000
x2
+

0.0115
x3
+

0.5000
x4
+

0.0616
x5
+

0.9498
x6
+

0.0268
x7

,
N≺B (Cl⪯3 ) =

1.0000
x1
+

1.0000
x2
+

1.0000
x3
+

1.0000
x4
+

1.0000
x5
+

1.0000
x6
+

1.0000
x7

,
N≺B (Cl⪯3 ) =

0.8792
x1
+

0.9498
x2
+

0.8316
x3
+

0.7666
x4
+

0.8089
x5
+

0.5000
x6
+

0.5000
x7

.

Property 3.2. For any B ⊆ A and ∀p, q ∈ {1, . . . , T }, the following
properties hold.

(1) N≺B (Cl⪰1 ) = U, N≺B (Cl⪯T ) = U; N≺B (Cl⪰T+1) = ∅, N
≺

B (Cl⪯0 ) = ∅.
(2) N≺B ((Cl⪰p )

c) = (N≺B (Cl⪰p ))
c , N≺B ((Cl⪯p )

c) = (N≺B (Cl⪯p ))
c ;

N≺B ((Cl⪰p )
c) = (N≺B (Cl⪰p ))

c , N≺B ((Cl⪯p )
c) = (N≺B (Cl⪯p ))

c .
(3) N≺B (Cl⪰p ∩ Cl⪰q ) = N≺B (Cl⪰p ) ∩ N≺B (Cl⪰q ), N

≺

B (Cl⪯p ∩ Cl⪯q ) =
N≺B (Cl⪯p ) ∩ N≺B (Cl⪯q );
N≺B (Cl⪰p ∪ Cl⪰q ) = N≺B (Cl⪰p ) ∪ N≺B (Cl⪰q ), N

≺

B (Cl⪯p ∪ Cl⪯q ) =
N≺B (Cl⪯p ) ∪ N≺B (Cl⪯q ).

(4) If Cl⪰p ⊆ Cl⪰q , then N≺B (Cl⪰p ) ⊆ N≺B (Cl⪰q ) and N≺B (Cl⪰p ) ⊆
N≺B (Cl⪰q );
If Cl⪯p ⊆ Cl⪯q , then N≺B (Cl⪯p ) ⊆ N≺B (Cl⪯q ) and N≺B (Cl⪯p ) ⊆
N≺B (Cl⪯q ).

(5) N≺B (Cl⪰p ∪ Cl⪰q ) ⊇ N≺B (Cl⪰p ) ∪ N≺B (Cl⪰q ), N
≺

B (Cl⪯p ∪ Cl⪯q ) ⊇
N≺(Cl⪯) ∪ N≺(Cl⪯);
B p B q
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N≺B (Cl⪰p ∩ Cl⪰q ) ⊆ N≺B (Cl⪰p ) ∩ N≺B (Cl⪰q ), N
≺

B (Cl⪯p ∩ Cl⪯q ) ⊆
N≺B (Cl⪯p ) ∩ N≺B (Cl⪯q ).

roof.

(1) It is straightforward according to Definition 3.4.
(2) First, we prove N≺B ((Cl⪰p )

c) = (N≺B (Cl⪰p ))
c . From Eqs. (20)

and (21), for any xi ∈ U , we have N≺B ((Cl⪰p )
c)(xi) =

N≺B (Cl⪯p−1)(xi) = infxj /∈Cl⪯p−1 1 − N−B (xi)(xj) = infxj∈Cl⪰p 1 −

N−B (xi)(xj) = 1 − supxj∈Cl
⪰
p
N−B (xi)(xj) = 1 − N≺B (Cl⪰t )(xi) =

(N≺B (Cl⪰t ))c(xi). Thus, N≺B ((Cl⪰p )
c) = (N≺B (Cl⪰p ))

c holds. Sim-
ilarly, N≺B ((Cl⪯p )

c) = (N≺B (Cl⪯p ))
c can also be proved. Sec-

ond, we prove N≺B ((Cl⪰p )
c) = (N≺B (Cl⪰p ))

c . From Eqs. (19)
and (22), for any xi ∈ U , we have N≺B ((Cl⪰p )

c)(xi) =
N≺B (Cl⪯p−1)(xi) = supxj∈Cl

⪯

p−1
N+B (xi)(xj) = 1− 1+ supxj∈Cl

⪯

p−1

N+B (xi)(xj) = 1 − (1 − supxj∈Cl
⪯

p−1
N+B (xi)(xj)) = 1 −

(infxj /∈Cl⪰p 1−N+B (xi)(xj)) = 1−N≺B (Cl⪰p )(xi) = (N≺B (Cl⪰p ))
c(xi).

Thus, N≺B ((Cl⪰p )
c) = (N≺B (Cl⪰p ))

c holds. Similarly, N≺B ((Cl⪯p )
c)

= (N≺B (Cl⪯p ))
c can also be proved.

(3) First, we prove N≺B (Cl⪰p ∩Cl
⪰
q ) = N≺B (Cl⪰p )∩N≺B (Cl⪰q ). When

p = q, this equation obviously holds. When p > q, we
have Cl⪰p ⊂ Cl⪰q , then Cl⪰p ∩ Cl⪰q = Cl⪰p . Thus, for any
xi ∈ U , we have N≺B (Cl⪰p ∩Cl

⪰
q )(xi) = N≺B (Cl⪰p )(xi). The other

side, we have (N≺B (Cl⪰p ) ∩ N≺B (Cl⪰q ))(xi) = N≺B (Cl⪰p )(xi) ∧
N≺B (Cl⪰q )(xi) = (infxj∈Cl⪯p−1 1 − N+B (xi)(xj)) ∧ (infxj∈Cl⪯q−1 1 −

N+B (xi)(xj)). Due to Cl⪯q−1 ⊂ Cl⪯p−1, (infxj∈Cl⪯p−1 1−N+B (xi)(xj))

∧ (infxj∈Cl⪯q−1 1 − N+B (xi)(xj)) = infxj∈Cl⪯p−1 1 − N+B (xi)(xj) =

infxj /∈Cl⪰p 1 − N+B (xi)(xj) = N≺B (Cl⪰p )(xi). So we can get
(N≺B (Cl⪰p )∩N

≺

B (Cl⪰q ))(xi) = N≺B (Cl⪰p )(xi) = N≺B (Cl⪰p ∩Cl
⪰
q )(xi).

Analogously, when p < q, we can also get (N≺B (Cl⪰p ) ∩
N≺B (Cl⪰q ))(xi) = N≺B (Cl⪰q )(xi) = N≺B (Cl⪰p ∩ Cl⪰q )(xi). Thus,
N≺B (Cl⪰p ∩ Cl⪰q ) = N≺B (Cl⪰p ) ∩ N≺B (Cl⪰q ) holds. Similarly,
N≺B (Cl⪯p ∩ Cl⪯q ) = N≺B (Cl⪯p ) ∩ N≺B (Cl⪯q ) can also be proved.
Second, we prove N≺B (Cl⪰p ∪ Cl⪰q ) = N≺B (Cl⪰p ) ∪ N≺B (Cl⪰q ).
When p = q, this equation obviously holds. When p > q,
we have Cl⪰p ⊂ Cl⪰q , then Cl⪰p ∪ Cl⪰q = Cl⪰q . Thus, for any
xi ∈ U , we have N≺B (Cl⪰p ∪Cl

⪰
q )(xi) = N≺B (Cl⪰q )(xi). The other

side, we have (N≺B (Cl⪰p ) ∪ N≺B (Cl⪰q ))(xi) = N≺B (Cl⪰p )(xi) ∨
N≺B (Cl⪰q )(xi) = (supxj∈Cl

⪰
p
N−B (xi)(xj))∨ (supxj∈Cl

⪰
q
N−B (xi)(xj)).

Because Cl⪰p ⊂ Cl⪰q , (supxj∈Cl
⪰
p
N−B (xi)(xj))∨ (supxj∈Cl

⪰
q
N−B (xi)

(xj)) = supxj∈Cl
⪰
q
N−B (xi)(xj) = N≺B (Cl⪰q )(xi). So we can get

(N≺B (Cl⪰p )∪N
≺

B (Cl⪰q ))(xi) = N≺B (Cl⪰q )(xi) = N≺B (Cl⪰p ∪Cl
⪰
q )(xi).

Analogously, when p < q, we can also get (N≺B (Cl⪰p ) ∪
N≺B (Cl⪰q ))(xi) = N≺B (Cl⪰p )(xi) = N≺B (Cl⪰p ∪ Cl⪰q )(xi). Thus,
N≺B (Cl⪰p ∪ Cl⪰q ) = N≺B (Cl⪰p ) ∪ N≺B (Cl⪰q ) holds. Similarly,
N≺B (Cl⪯p ∪ Cl⪯q ) = N≺B (Cl⪯p ) ∪ N≺B (Cl⪯q ) can also be proved.

(4) First, we prove that if Cl⪰p ⊆ Cl⪰q , then N≺B (Cl⪰p ) ⊆ N≺B (Cl⪰q )
and N≺B (Cl⪰p ) ⊆ N≺B (Cl⪰q ). From Eq. (19), for any xi ∈
U , we have N≺B (Cl⪰p )(xi) = infxj∈Cl⪯p−1 1 − N+B (xi)(xj) and

N≺B (Cl⪰q )(xi) = infxj∈Cl⪯q−1 1 − N+B (xi)(xj). Because Cl⪰p ⊆

Cl⪰q ⇒ Cl⪯p−1 ⊆ Cl⪯q−1, we can get infxj∈Cl⪯p−1 1−N+B (xi)(xj) ≤

infxj∈Cl⪯q−1 1 − N+B (xi)(xj) ⇒ N≺B (Cl⪰p )(xi) ≤ N≺B (Cl⪰q )(xi) ⇒
N≺B (Cl⪰p ) ⊆ N≺B (Cl⪰q ). From Eq. (20), for any xi ∈ U , we
have N≺(Cl⪰)(x ) = sup ⪰ N−(x )(x ) and N≺(Cl⪰)(x ) =
B p i xj∈Clp B i j B q i

7

supxj∈Cl
⪰
q
N−B (xi)(xj). Because Cl⪰p ⊆ Cl⪰q , we can get

supxj∈Cl
⪰
p
N−B (xi)(xj) ≤ supxj∈Cl

⪰
q
N−B (xi)(xj)⇒ N≺B (Cl⪰p )(xi)

≤ N≺B (Cl⪰q )(xi) ⇒ N≺B (Cl⪰p ) ⊆ N≺B (Cl⪰q ). In summary, if
Cl⪰p ⊆ Cl⪰q , then N≺B (Cl⪰p ) ⊆ N≺B (Cl⪰q ) and N≺B (Cl⪰p ) ⊆
N≺B (Cl⪰q ). Similarly, if Cl⪯p ⊆ Cl⪯q , then N≺B (Cl⪯p ) ⊆ N≺B (Cl⪯q )
and N≺B (Cl⪯p ) ⊆ N≺B (Cl⪯q ) can also be proved.

(5) First, we prove N≺B (Cl⪰p ∪ Cl⪰q ) ⊇ N≺B (Cl⪰p ) ∪ N≺B (Cl⪰q ).
Due to Cl⪰p ⊆ Cl⪰p ∪ Cl⪰q and Cl⪰q ⊆ Cl⪰p ∪ Cl⪰q , we have
N≺B (Cl⪰p ∪ Cl⪰q ) ⊇ N≺B (Cl⪰p ) and N≺B (Cl⪰p ∪ Cl⪰q ) ⊇ N≺B (Cl⪰q )
according to Property 3.2 (4). Naturally, we can get that
N≺B (Cl⪰p ∪ Cl⪰q ) ⊇ N≺B (Cl⪰p ) ∪ N≺B (Cl⪰q ) holds. Similarly, the
other three formulas can also be proved. □

. Conditional entropy based on FDNRS and non-monotonic
eature selection in IvODS

As a common uncertainty measure, information entropy is
idely used in feature selection tasks [27,28,39]. In this sec-
ion, we first propose a conditional entropy based on FDNRS,
alled FDNCE, and analyze its monotonicity. Afterwards, we de-
ine a non-monotonic reduct search strategy using FDNCE. Finally,
e introduce a heuristic feature selection algorithm with the
on-monotone reduct search strategy.

.1. Fuzzy dominance neighborhood conditional entropy to IvODS

In [26], Hu et al. successively proposed dominance conditional
ntropy (DCE) and fuzzy dominance conditional entropy (FDCE)
or evaluating the consistency degree of the ranking of objects un-
er conditional attributes and decisions in an ODS. Obviously, the
CE follows the dominance relation, which only reflects the dom-
nance relation between objects from the qualitative perspectives.
he FDCE follows the fuzzy dominance relation, which reflects
he dominance relation between objects from both qualitative
nd quantitative perspectives. Naturally, these two metrics can
e applied to IvODS by simply changing the preference relation
etween single values to that of interval values. However, as
e mentioned earlier, the fuzzy dominance relation does not
onsider the effects of noise. To make up for this defect, the
ollowing we define the FDNCE in an IvODS.

efinition 4.1. Given an IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, ∀B ⊆ A,
he FDNCE of B relative to d is defined as

E≺d|B(U) = −
1
|U |

n∑
i=1

log
|N+B (xi) ∩ D+d (xi)|
|N+B (xi)|

, (23)

where |∗| represents the cardinality of set ∗, N+B (xi) is the fuzzy
dominating neighborhood set of xi under B, and D+d (xi) is the
dominating set of xi under d.

In Eq. (23), |N
+

B (xi)∩D
+

d (xi)|

|N+B (xi)|
can be regarded as a variable, which

is the core part of NE≺d|B(U). Intuitively, this variable measures
the consistency degree of the objects ranking in terms of the
conditional attribute set B and the decision d. It is easy to find
that the value of FDNCE is inversely proportional to this variable,
and NE≺d|B(U) is non-negative. When using FDNCE to evaluate an
attribute subset, we expect that the ranking information provided
by this attribute subset for the objects in IvODS is the same as the
decision. Therefore, the smaller NE≺d|B(U) (or the larger the vari-

able |N
+

B (xi)∩D
+

d (xi)|

|N+B (xi)|
) indicates that the attribute subset B is more

meaningful. Next, we prove that FDNCE is non-monotonicity.
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roposition 4.1. Let C ⊆ B ⊆ A, then NE≺d|C (U) ≤ NE≺d|B(U)
r NE≺d|C (U) ≥ NE≺d|B(U) is indeterminate, namely, FDNCE is non-
onotonic.

roof. From Eq. (23), we have

= NE≺d|B(U)− NE≺d|C (U)

=
1
|U |

n∑
i=1

(log
|N+C (xi) ∩ D+d (xi)|
|N+C (xi)|

− log
|N+B (xi) ∩ D+d (xi)|
|N+B (xi)|

).

ssuming that g1(xi) =
|N+C (xi)∩D

+

d (xi)|

|N+C (xi)|
and g2(xi) =

|N+B (xi)∩D
+

d (xi)|

|N+B (xi)|
.

It can be obtained that △ = 1
|U |

∑n
i=1(log g1(xi) − log g2(xi)) =

1
|U |

∑n
i=1 log

g1(xi)
g2(xi)

. Since |N+C (xi) ∩ D+d (xi)| < |N+C (xi)| and
N+B (xi) ∩ D+d (xi)| < |N+B (xi)| hold, then 0 < g1(xi), g2(xi) < 1
holds. Hence, g1(xi)

g2(xi)
> 1 ( g1(xi)g2(xi)

< 1) is uncertain. So△ > 0 (△ < 0)
is indeterminate. Therefore, FDNCE is non-monotonic. □

4.2. The evaluation of attributes in IvODS

In this subsection, we introduce a non-monotonic reduct
search strategy using FDNCE in IvODS.

Definition 4.2. Given an IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, ∀Q ⊆ A,
e say Q is a reduct of A relative to d if Q satisfies
(1) NE≺d|Q (U) ≤ NE≺d|A(U),
(2) ∀ak ∈ Q , NE≺d|(Q−{ak})(U) > NE≺d|Q (U).

The first item guarantees that the selected attribute subset Q
can provide correct objects ranking information that is not worse
than that of raw attribute set A. The second item requires that no
redundant attributes in the selected attribute subset Q .

According to Definition 4.2, we define the inner and outer
significance of an attribute as follows.

Definition 4.3. Given an IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, ∀B ⊆ A
and ∀a ∈ B, the inner significance of a relative to B is defined as

sigU
inner (a, B, d) = NE≺d|(B−{a})(U)− NE≺d|B(U). (24)

Definition 4.4. Given an IvODS IS⪯ = ⟨U, A∪{d}, V ⟩, ∀B ⊆ A and
a ∈ (C −B), the outer significance of a relative to B is defined as

igU
outer (a, B, d) = NE≺d|B(U)− NE≺d|(B∪{a})(U). (25)

The matrix representation of knowledge is an intuitive and
ffective way for processing complex data, and the calculation
f the matrix can be easily implemented using a computer. In
articular, the relation between objects is usually expressed and
tored in the form of a matrix in the computer. Thence, it is
ecessary to present a method for computing FDNCE by using
elation matrices. In what follows, we define some operations on
elation matrices.

efinition 4.5. Let B1, B2 ⊆ A ∪ {d}, RB1
U = [rB1(i,j)]n×n and

B2
U = [r

B2
(i,j)]n×n are two relation matrices under attribute sets B1

nd B2, respectively, then the ‘‘∧’’ and ‘‘∗’’ operations between
hem are defined as
B1
U ∧ RB2

U = [min{rB1(i,j), r
B2
(i,j)}]n×n = RB1∪B2

U , (26)

RB1
U ∗ R

B2
U = [r

B1
(i,j) × rB2(i,j)]n×n. (27)

Definition 4.6. Let B ⊆ A ∪ {d}, RB
U = [r

B
(i,j)]n×n be a relation

matrix, and its diagonal matrix is defined as R̂B
= [̂rB ] ,
U (i,j) n×n

8

where

rB(i,j) =

⎧⎪⎨⎪⎩
n∑

l=1

rB(i,l), i, j ∈ [1, n], i = j;

0, i, j ∈ [1, n], i ̸= j.
(28)

Moreover, the determinant and inverse matrix of R̂B
U are denoted

as |R̂B
U | = Πn

i=j=1̂r
B
(i,j) and (R̂B

U )
−1
= [1/̂rB(i,j)]n×n, respectively.

Corollary 4.1. Given an IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, ∀B ⊆ A, the
formula for calculating FDNCE using matrices is expressed as

NE≺d|B(U) = −
1
|U |

log |ˆ̃N≺B∪dU ∗ (ˆ̃N≺BU )−1|, (29)

here Ñ≺B∪dU = Ñ≺BU ∧ D⪯dU = [N≺B∪d(i,j) ]n×n, D
⪯d
U is a dominance

elation matrix derived by dominance relation D⪯d .

roof. According to Eq. (29), we can get that

E≺d|B(U) = −
1
|U |

logΠn
i=j=1

N̂≺B∪d(i,j)

N̂≺B(i,j)
= −

1
|U |

log
Πn

i=j=1N̂
≺B∪d
(i,j)

Πn
i=j=1N̂

≺B
(i,j)

= −
1
|U |

log
Πn

i=1(
∑n

l=1 N
≺B∪d
(i,l) )

Πn
i=1(

∑n
l=1 N

≺B
(i,l))

= −
1
|U |

log
Πn

i=1|N
+

B∪d(xi)|
Πn

i=1|N
+

B (xi)|

= −
1
|U |

log
Πn

i=1|N
+

B (xi) ∩ D+d (xi)|
Πn

i=1|N
+

B (xi)|

= −
1
|U |

n∑
l=1

log
|N+B (xi) ∩ D+d (xi)|
|N+B (xi)|

.

From this we can conclude that the results of computing FDNCE
by Eqs. (23) and (29) are equal. □

Next, we use an example to demonstrate the process of calcu-
lating FDNCE by using relation matrices.

Example 3. Continuing from Example 2. First, we calculate the
fuzzy dominance neighborhood relation matrix Ñ≺AU and the dom-
inance relation matrix D⪯dU as Ñ≺AU =⎡⎢⎢⎢⎢⎢⎢⎣

0.5000 0.1208 0.0032 0.0235 0.0029 0.8792 0.0075
0.1436 0.5000 0.0115 0.0115 0.0194 0.9498 0.0268
0.2228 0.2060 0.5000 0.0268 0.0493 0.8316 0.7105
0.1667 0.1535 0.0115 0.5000 0.0616 0.7666 0.0268
0.1978 0.1824 0.1436 0.2895 0.5000 0.8089 0.2895
0.0049 0.0115 0.0002 0.0004 0.0004 0.5000 0.0004
0.0064 0.0058 0.0219 0.0021 0.0049 0.1001 0.5000

⪯d
U =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
0 1 0 1 0 0 0
0 1 1 1 0 1 0
0 1 0 1 0 0 0
1 1 1 1 1 1 1
0 1 1 1 0 1 0
1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

. Then, we calculate matrix

≺A∪d
U by Eq. (26) as

≺A∪d
U = Ñ≺AU ∧ D⪯dU

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5000 0.1208 0.0032 0.0235 0.0029 0.8792 0.0075
0 0.5000 0 0.0115 0 0 0
0 0.2060 0.5000 0.0268 0 0.8316 0
0 0.1535 0 0.5000 0 0 0

0.1978 0.1824 0.1436 0.2895 0.5000 0.8089 0.2895
0 0.0115 0.0002 0.0004 0 0.5000 0

0.0064 0.0058 0.0219 0.0021 0.0049 0.1001 0.5000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
7×7

.
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ubsequently, the matrices Ñ≺AU and Ñ≺A∪dU are diagonalized by
q. (28) as

≺̂A
U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5372 0 0 0 0 0 0
0 1.6625 0 0 0 0 0
0 0 2.5469 0 0 0 0
0 0 0 1.6867 0 0 0
0 0 0 0 2.4117 0 0
0 0 0 0 0 0.5178 0
0 0 0 0 0 0 0.6412

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
7×7

,

≺̂A∪d
U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5372 0 0 0 0 0 0
0 0.5115 0 0 0 0 0
0 0 1.5643 0 0 0 0
0 0 0 0.6535 0 0 0
0 0 0 0 2.4117 0 0
0 0 0 0 0 0.5120 0
0 0 0 0 0 0 0.6412

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
7×7

.

inally, the FDNCE NE≺d|A(U) is calculated by Eq. (29) as NE≺d|A(U)

−
1
7 log |ˆ̃N≺A∪dU ∗ (ˆ̃N≺AU )−1| = 0.5411.

4.3. Heuristic feature selection algorithm based on FDNCE to IvODS

In this subsection, we design a FDNCE based heuristic fea-
ture selection algorithm to IvODS (HFS-IvO) according to Defini-
tion 4.2, and then analyze its time complexity.

Algorithm 1 HFS-IvO algorithm

Input: An IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, parameters α, and β .
Output: A reduct RedU .
1: Initialize RedU ← ∅;
2: Calculate FDNCE NE≺d|A(U) by Eq. (29);
3: for k = 1 to |A| do
4: Calculate sigU

inner (ak, A, d) by Definition 4.3;
5: if sigU

inner (ak, A, d) > 0 then
6: RedU ← RedU ∪ {ak};
7: end if
8: end for
9: Let Q ← RedU ;

10: while NE≺d|Q (U) > NE≺d|A(U) do
11: for l = 1 to |A− Q | do
12: Calculate sigU

outer (al,Q , d) by Definition 4.4;
13: end for
14: Select a0 = max{sigU

outer (al,Q , d), al ∈ (A− Q )};
15: Q ← Q ∪ {a0};
16: end while
17: for each a ∈ Q do
18: Calculate FDNCE NE≺d|(Q−{a})(U) by Eq. (29);
19: if NE≺d|(Q−{a})(U) ≤ NE≺d|Q (U) then
20: Q ← Q − {a};
21: end if
22: end for
23: RedU ← Q ;
24: return RedU ;

Next, we explain the steps in Algorithm 1. Step 2 is to calculate
DNCE under raw attribute set A. Steps 3–9 is to add attributes
ith inner significance greater than zero to RedU , and let Q =
edU . Steps 10–16 is to search the attribute with the highest outer
ignificance from remaining attribute subset A−Q to Q until Step
10 does not hold. Steps 17–22 is to delete redundant attributes
from attribute subset Q . Steps 23–24 is to output the final reduct.
The time complexity of the main steps in this algorithm are listed
in Table 6.
9

Table 6
The time complexity of HFS-IvO algorithm.
Steps Time complexity Steps Time complexity

2 O(|A||U |2) 10–16 O(|A|2|U |2)
3–9 O(|A|2|U |2) 17–22 O(|Q |2|U |2)

5. Incremental feature selection for dynamic IvODS with the
variation of multiple objects

For dynamic IvODS, employing the HFS-IvO algorithm to com-
pute a reduct is very time-consuming, especially in large data.
Because this algorithm retrains the changed IvODS as a new one,
which needs to recalculate knowledge from scratch. To improve
efficiency, this section presents two incremental algorithms for
feature selection on the basis of HFS-IvO algorithm.

5.1. Incremental feature selection for adding object set

This subsection first presents the updating mechanism of FD-
NCE when adding object set to an IvODS. Then, on this ba-
sis, a corresponding incremental feature selection algorithm is
proposed.

5.1.1. Updating mechanism of FDNCE
Uncertainty metric is an important part of feature selection

algorithms, and its calculation speed determines the efficiency of
the algorithms. Thence, this subsection present an incremental
update mechanism that is used to quickly compute the new
FDNCE when adding objects to an IvODS. From Eq. (29), we
can easily find that the pivotal step in the process of updating
FDNCE is to calculate the corresponding diagonal matrix in an
incremental manner. In what follows, the principle for updating
the diagonal matrix is presented.

Proposition 5.1. Given an IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, adding
object set Uad = {xn+1, xn+2, . . . , xn+n′} to IS⪯, then the changed
object set is U ′ = U ∪ Uad. Let ∀B ⊆ A, known the previous
diagonal matrix is ˆ̃N≺BU = [N̂

≺B
(i,j)]n×n, which is updated to ˆ̃N≺BU ′ =

[N̂
′
≺B

(i,j) ](n+n′)×(n+n′) after adding objects, where

N̂
′
≺B

(i,j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
N̂≺B(i,j) +

n+n′∑
l=n+1

N≺B(i,l), i, j ∈ [1, n], i = j;

n+n′∑
l=1

N≺B(i,l), i, j ∈ [n+ 1, n+ n′], i = j;

0, i, j ∈ [1, n+ n′], i ̸= j,

(30)

where N̂≺B(i,j) is known,
∑n+n′

l=n+1 N
≺B
(i,l) and

∑n+n′
l=1 N≺B(i,l) need to be

calculated by Definition 3.2.

Proof. According to Definition 4.6, we know that all non-diagonal
elements in matrix ˆ̃N≺BU ′ are zero, that is, ∀i, j ∈ [1, n + n′] and
i ̸= j, N̂

′
≺B

(i,j) = 0 always holds. Then ∀i, j ∈ [1, n] and i = j, we
have N̂

′
≺B

(i,j) =
∑n+n′

l=1 N≺B(i,l) =
∑n

l=1 N
≺B
(i,l) +

∑n+n′
l=n+1 N

≺B
(i,l) = N̂≺B(i,j) +∑n+n′

l=n+1 N
≺B
(i,l), where N̂≺B(i,j) is known, and

∑n+n′
l=n+1 N

≺B
(i,l) needs to be

calculated by Definition 3.2. Furthermore, ∀i, j ∈ [n + 1, n + n′]
and i = j, N̂

′
≺B

(i,j) =
∑n+n′

l=1 N≺B(i,l) also needs to be calculated by
Definition 3.2. In summary, based on the previous diagonal matrix
N̂≺BU , we calculate new knowledge to obtain an updated diagonal
matrix ˆ̃N≺BU ′ , where N̂

′
≺B

(i,j) is denoted as Eq. (30). □

Analogously, the diagonal matrix ˆ̃N≺B∪dU ′ can also be updated by
Proposition 5.1. Therefore, according to Eq. (29), we can directly
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new IvODS after adding object set.
U a1 a2 a3 a4 d

x1 [0.28, 0.30] [0.33, 0.40] [0.54, 0.66] [0.53, 0.65] 1
x2 [0.27, 0.29] [0.49, 0.60] [0.36, 0.44] [0.41, 0.50] 3
x3 [0.40, 0.43] [0.41, 0.50] [0.27, 0.33] 0 2
x4 [0.41, 0.50] [0.08, 0.10] [0.20, 0.24] [0.41, 0.50] 3
x5 [0.42, 0.44] [0.16, 0.20] 0 [0.16, 0.20] 1
x6 [0.55, 0.60] [0.82, 1.00] [0.72, 0.88] [0.82, 1.00] 2
x7 [0.78, 0.81] [0.65, 0.80] [0.36, 0.44] [0.08, 0.10] 1

x8 [0.75, 0.77] [0.25, 0.30] [0.40, 0.48] [0.45, 0.55] 1
x9 [0.83, 0.84] [0.90, 1.00] [0.90, 1.00] [0.90, 1.00] 3
x10 [0.85, 0.88] 0 [0.34, 0.42] [0.08, 0.10] 3

compute the new FDNCE using the updated matrices ˆ̃N≺BU ′ and

N̂≺B∪dU ′ . Subsequently, according to Proposition 5.1, we use an
example to demonstrate the updating process of FDNCE.

Example 4. Continuing from Example 3, adding object set Uad =

{x8, x9, x10} to Table 5, then the new IvODS is shown in Table 7,
where the new object set is denoted as U ′ = {x1, x2, . . . , x10}.
First, we update the diagonal matrices ˆ̃N≺AU ′ and ˆ̃N≺A∪dU ′ according
to Proposition 5.1 as given in Box I. Then, based on the updated
diagonal matrices ˆ̃N≺AU ′ and ˆ̃N≺A∪dU ′ , the new FDNCE NE≺d|A(U

′) is
calculated by Eq. (29) as NE≺d|A(U

′) = 0.3316.

5.1.2. The incremental feature selection algorithm
This subsection introduces a FDNCE based incremental feature

selection algorithm when adding object set to IvODS (IFSA-IvO),
and then analyze its time complexity.

Algorithm 2 IFSA-IvO algorithm

Input: An original IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, and its reduct Q ,
parameters α, β , original diagonal matrices ˆ̃N≺AU , ˆ̃N≺A∪dU , ˆ̃N≺QU ,
ˆ̃N≺Q∪dU , and Uad = {xn+1, xn+2, . . . , xn+n′};

Output: A new reduct RedU ′ on U ∪ Uad.

1: Add object set U ′ ← U ∪ Uad;
2: Update the diagonal matrices ˆ̃N≺AU →

ˆ̃N≺AU ′ ,
ˆ̃N≺A∪dU →

ˆ̃N≺A∪dU ′ ,ˆ̃N≺QU →
ˆ̃N≺QU ′ ,

ˆ̃N≺Q∪dU →
ˆ̃N≺Q∪dU ′ by Proposition 5.1;

3: Calculate the new FDNCENE≺d|A(U
′) andNE≺d|Q (U

′) by Eq. (29);

4: if NE≺d|Q (U
′) > NE≺d|A(U

′) then
5: for each a ∈ (A− Q ) do
6: Calculate sigU ′

outer (a,Q , d) by Eq. (25), then ranking these
attributes w.r.t descending order of their outer signifi-
cance, and record the results as {a′1, a

′

2, . . . , a
′

|A−Q |};
7: end for
8: while NE≺d|Q (U

′) > NE≺d|A(U
′) do

9: for h = 1 to |A− Q | do
10: Select Q ← Q ∪ {a′h} and calculate NE≺d|Q (U

′);
11: end for
12: end while
13: end if
14: for each a ∈ Q do
15: Calculate FDNCE NE≺d|(Q−{a})(U

′) by Eq. (29);
16: if NE≺d|(Q−{a})(U

′) ≤ NE≺d|Q (U
′) then

17: Q ← Q − {a};
18: end if
19: end for
20: RedU ′ ← Q ;
21: return RedU ′ ;
10
Table 8
The time complexity of IFSA-IvO algorithm.
Steps Time complexity Steps Time complexity

2–3 O(|A||Uad||U ′|) 14–19 O(|Q |2|U ′|2)
5–12 O((|A| − |Q |)|U ′|2)

Table 9
The comparison of the time complexity of algorithms HFS-IvO and IFSA-IvO.
Algorithms Time complexity

HFS-IvO O(|A||U ′|2 + |A|2|U ′|2 + |A|2|U ′|2 + |Q |2|U ′|2)
IFSA-IvO O(|A||Uad||U ′| + (|A| − |Q |)|U ′|2 + |Q |2|U ′|2)

In Algorithm 2, Step 1 is to add the object set to the original
IvODS. Step 2 is to update the original diagonal matrices by
Proposition 5.1. Step 3 is to calculate the new FDNCE by Eq. (29).
Step 4 is to determine whether the new FDNCE under the previ-
ous reduct Q is greater than that of under the raw attribute set
A, if not, then keep the previous reduct unchanged. Steps 5–7 is
to construct a descending sequence for the remaining attributes.
Steps 8–12 is to incrementally update the selected attribute sub-
set until Step 8 does not hold. Steps 14–19 is to remove redundant
attributes from the selected attribute subset. Steps 20–21 is to
output the final reduct. The time complexity of the main steps in
this algorithm are listed in Table 8. Subsequently, we collect the
time complexity of algorithms HFS-IvO and IFSA-IvO to Table 9
for intuitive comparison.

From Table 9, we can easily find that the time complexity
of IFSA-IvO algorithm is usually much less than that of HFS-IvO
algorithm. Because HFS-IvO algorithm computes a new reduct
from scratch, it ignores the previously acquired knowledge. By
contrast, IFSA-IvO algorithm uses the previous knowledge for
accelerating the acquisition of a new reduct. Thence, compared
with HFS-IvO algorithm, IFSA-IvO algorithm saves time cost.

5.2. Incremental feature selection for deleting object set

In this subsection, we first introduce an incremental update
mechanism for calculating the new FDNCE when object set is
deleted from an IvODS. Then, on this basis, a corresponding
incremental feature selection algorithm is proposed.

5.2.1. Updating mechanism of FDNCE
To update FDNCE, below we present the principle for updating

the diagonal matrix when deleting objects set.

Proposition 5.2. Given an IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, deleting
bject set Ude = {xq1 , xq2 , . . . , xqn′ } from IS⪯, then the changed
bject set is U ′ = U − Ude. Let ∀B ⊆ A, known the previous relation
atrix Ñ≺BU = [N

≺B
(i,j)]n×n and its diagonal matrix ˆ̃N≺BU = [N̂

≺B
(i,j)]n×n,

here the diagonal matrix is updated to ˆ̃N≺BU ′ = [N̂
′
≺B

(i,j) ](n−n′)×(n−n′)
fter deleting objects, where

ˆ′≺B(i,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N̂≺B(i+k−1,j+k−1) −

n′∑
t=1

N≺B(i+k−1,qt ), i, j ∈ [qk−1 − k+ 2, qk − k+ 1), i = j;

N̂≺B(i+n′ ,j+n′ ) −

n′∑
t=1

N≺B(i+n′ ,qt ), i, j ∈ [qn′ − n′ + 1, n− n′], i = j;

0, i, j ∈ [1, n− n′], i ̸= j,

(31)

here 1 ≤ k ≤ n′.

roof. When the object set Ude is deleted, the raw object set
ecomes U ′ = {x , x , . . . , x ′}. In ˆ̃N≺B, the elements on the
1 2 n−n U ′
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ˆ̃N≺AU ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5372 0 0 0 0 0 0 0.1698 0.9706 0.0075
0 1.6625 0 0 0 0 0 0.0653 0.9829 0.0049
0 0 2.5469 0 0 0 0 0.1436 0.9852 0.0115
0 0 0 1.6867 0 0 0 0.6106 0.9765 0.0268
0 0 0 0 2.4117 0 0 0.7210 0.9829 0.1436
0 0 0 0 0 0.5178 0 0.0021 0.5950 0.0002
0 0 0 0 0 0 0.6412 0.0123 0.5612 0.0009

0.0090 0.0082 0.0075 0.0476 0.0131 0.1368 0.0176 0.5000 0.6791 0.0176
0.0029 0.0039 0.0001 0.0002 0.0001 0.0702 0.0002 0.0012 0.5000 0.0001
0.0032 0.0029 0.0110 0.0170 0.0128 0.0524 0.3318 0.2593 0.5000 0.5000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×10

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.6851 0 0 0 0 0 0 0 0 0
0 2.7156 0 0 0 0 0 0 0 0
0 0 3.6872 0 0 0 0 0 0 0
0 0 0 3.3005 0 0 0 0 0 0
0 0 0 0 4.2592 0 0 0 0 0
0 0 0 0 0 1.1150 0 0 0 0
0 0 0 0 0 0 1.2157 0 0 0
0 0 0 0 0 0 0 1.4364 0 0
0 0 0 0 0 0 0 0 0.5789 0
0 0 0 0 0 0 0 0 0 1.6903

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×10

,

ˆ̃N≺A∪dU ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5372 0 0 0 0 0 0 0.1698 0.9706 0.0075
0 0.5115 0 0 0 0 0 0 0.9829 0.0049
0 0 1.5643 0 0 0 0 0 0.9852 0.0115
0 0 0 0.6535 0 0 0 0 0.9765 0.0268
0 0 0 0 2.4117 0 0 0.7210 0.9829 0.1436
0 0 0 0 0 0.5120 0 0 0.5950 0.0002
0 0 0 0 0 0 0.6412 0.0123 0.5612 0.0009

0.0090 0.0082 0.0075 0.0476 0.0131 0.1368 0.0176 0.5000 0.6791 0.0176
0 0.0039 0 0.0002 0 0 0 0 0.5000 0.0001
0 0.0029 0 0.0170 0 0 0 0 0.5000 0.5000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×10

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.6851 0 0 0 0 0 0 0 0 0
0 1.4993 0 0 0 0 0 0 0 0
0 0 2.5610 0 0 0 0 0 0 0
0 0 0 1.6567 0 0 0 0 0 0
0 0 0 0 4.2592 0 0 0 0 0
0 0 0 0 0 1.1072 0 0 0 0
0 0 0 0 0 0 1.2157 0 0 0
0 0 0 0 0 0 0 1.4364 0 0
0 0 0 0 0 0 0 0 0.5042 0
0 0 0 0 0 0 0 0 0 1.0199

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×10

.

Box I.
˜

˜

ff-diagonal lines are all zero, i.e., ∀i, j ∈ [1, n − n′] and i ̸= j,ˆ′≺B(i,j) = 0 always holds. According to Definition 4.6, for elements
n the diagonal, we have N̂

′
≺B

(i,j) =
∑n

l=1 N
≺B
(i,l) −

∑n′
t=1 N

≺B
(i,t) =ˆ≺B(i,j) −

∑n′
t=1 N

≺B
(i,t), and its position has two changes in ˆ̃N≺BU ′ . One

or any i, j ∈ [qk−1, qk) and i = j, the row and column coordinates

f N̂≺B(i,j) should be shifted forward by k− 1 positions at the same

ime. After that, we can get that for any i, j ∈ [qk−1 − k +
, qk − k + 1) and i = j, N̂

′
≺B

(i,j) = N̂≺B(i+k−1,j+k−1) −
∑n′

t=1 N
≺B
(i+k−1,qt )

holds. On the other hand, for any i, j ∈ [qn′ − n′ + 1, n − n′]

and i = j, the row and column coordinates of N̂≺B(i,j) should be
shifted forward by n′ positions simultaneously. Then, we have
N̂
′
≺B

(i,j) = N̂≺B(i+n′,j+n′) −
∑n′

t=1 N
≺B
(i+n′,qt )

holds. To sum up, based on
the previous relation matrix Ñ≺BU and its diagonal matrix ˆ̃N≺BU ,

we delete the corresponding knowledge to obtain an updated
diagonal matrix ˆ̃N≺B. □
U ′

11
Analogously, the diagonal matrix ˆ̃N≺B∪dU ′ can also be updated

by Proposition 5.2. Hence, according to Eq. (29), we can directly
compute the new FDNCE using the updated matrices ˆ̃N≺BU ′ and

N̂≺B∪dU ′ . Subsequently, according to Proposition 5.2, we use an

example to demonstrate the updating process of FDNCE.

Example 5. Continuing from Example 3, deleting object set

Uad = {x2, x4} from Table 5, then the new IvODS is shown

in Table 10, where the new object set is denoted as U ′ =
{x1, x3, x5, x6, x7}. First, we update the diagonal matrices ˆ̃N≺AU ′ and

N̂≺A∪dU ′ according to Proposition 5.2 as given in Box II. Then, based

on the updated diagonal matrices ˆ̃N≺AU ′ and
ˆ̃N≺A∪dU ′ , the new FDNCE

NE≺d|A(U
′) is calculated using Eq. (29) as NE≺d|A(U

′) = 0.1628.
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ˆ̃N≺AU ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5372−
∑
t=2,4

N≺A(1,t) ◁0 0 ◁0 0 0 0

◁0 ���1.6625 ◁0 ◁0 ◁0 ◁0 ◁0
0 ◁0 2.5469−

∑
t=2,4

N≺A(3,t) ◁0 0 0 0

◁0 ◁0 ◁0 ���1.6867 ◁0 ◁0 ◁0
0 ◁0 0 ◁0 2.4117−

∑
t=2,4

N≺A(5,t) 0 0

0 ◁0 0 ◁0 0 0.5178−
∑
t=2,4

N≺A(6,t) 0

0 ◁0 0 ◁0 0 0 0.6412−
∑
t=2,4

N≺A(7,t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
7×7

=

⎡⎢⎢⎢⎢⎣
1.3929 0 0 0 0

0 2.3142 0 0 0
0 0 1.9398 0 0
0 0 0 0.5059 0
0 0 0 0 0.6333

⎤⎥⎥⎥⎥⎦
5×5

,

ˆ̃N≺A∪dU ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5372−
∑
t=2,4

N≺A(1,t) ◁0 0 ◁0 0 0 0

◁0 ���0.5115 ◁0 ◁0 ◁0 ◁0 ◁0
0 ◁0 1.5643−

∑
t=2,4

N≺A(3,t) ◁0 0 0 0

◁0 ◁0 ◁0 ���0.6535 ◁0 ◁0 ◁0
0 ◁0 0 ◁0 2.4117−

∑
t=2,4

N≺A(5,t) 0 0

0 ◁0 0 ◁0 0 0.5120−
∑
t=2,4

N≺A(6,t) 0

0 ◁0 0 ◁0 0 0 0.6412−
∑
t=2,4

N≺A(7,t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
7×7

=

⎡⎢⎢⎢⎢⎣
1.3929 0 0 0 0

0 1.3316 0 0 0
0 0 1.9398 0 0
0 0 0 0.5002 0
0 0 0 0 0.6333

⎤⎥⎥⎥⎥⎦
5×5

.

Box II.
able 10
new IvODS after deleting object set.
U a1 a2 a3 a4 d

x1 [0.28, 0.30] [0.33, 0.40] [0.54, 0.66] [0.53, 0.65] 1
x2 [0.27, 0.29] [0.49, 0.60] [0.36, 0.44] [0.41, 0.50] 3
x3 [0.40, 0.43] [0.41, 0.50] [0.27, 0.33] 0 2
x4 [0.41, 0.50] [0.08, 0.10] [0.20, 0.24] [0.41, 0.50] 3
x5 [0.42, 0.44] [0.16, 0.20] 0 [0.16, 0.20] 1
x6 [0.55, 0.60] [0.82, 1.00] [0.72, 0.88] [0.82, 1.00] 2
x7 [0.78, 0.81] [0.65, 0.80] [0.36, 0.44] [0.08, 0.10] 1

5.2.2. The incremental feature selection algorithm
This subsection introduces a FDNCE based incremental fea-

ure selection algorithm when deleting object set from IvODS
IFSD-IvO), and then analyze its time complexity.

In Algorithm 3, Step 1 is to delete the object set. Step 2
s to update the original diagonal matrices by Proposition 5.2.
tep 3 is to compute the new FDNCE by Eq. (29). Step 4 is to
etermine whether the new FDNCE under the original reduct is
ot higher than that of under the entire attribute set, if so, then
eep the original reduct unchanged. Steps 5–7 is to construct a
escending sequence for the remaining attributes. Steps 8–12 is
o incrementally update the selected feature subset until Step 8
oes not hold. Steps 14–19 is to remove redundant attributes
rom the selected attribute subset. Steps 20–21 is to output the
12
Table 11
The time complexity of IFSD-IvO algorithm.
Steps Time complexity Steps Time complexity

2–3 O(|Ude||U |) 14–19 O(|Q |2|U ′|2)
5–12 O((|A| − |Q |)|U ′|2)

Table 12
The comparison of the time complexity of algorithms HFS-IvO and IFSD-IvO.
Algorithms Time complexity

HFS-IvO O(|A||U ′|2 + |A|2|U ′|2 + |A|2|U ′|2 + |Q |2|U ′|2)
IFSD-IvO O(|Ude||U | + (|A| − |Q |)|U ′|2 + |Q |2|U ′|2)

final reduct. The time complexity of the main steps in this algo-
rithm are listed in Table 11. Subsequently, the time complexity
of algorithms HFS-IvO and IFSD-IvO are collected into Table 12
for intuitive comparison. Obviously, the time complexity of IFSD-
IvO algorithm is much lower than that of HFS-IvO algorithm.
The main reason is that IFSD-IvO algorithm uses the previous
knowledge when calculating the new reduct, while HFS-IvO al-
gorithm calculates a new reduct from scratch, which does not
use the previous knowledge. So HFS-IvO algorithm is very time
consuming for calculating a new reduct.
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Algorithm 3 IFSD-IvO algorithm

Input: An original IvODS IS⪯ = ⟨U, A ∪ {d}, V ⟩, and its reduct Q ,
parameters α, β , original relation matrices Ñ≺AU , Ñ≺A∪dU , Ñ≺QU ,

Ñ≺Q∪dU , and their diagonal matrices ˆ̃N≺AU , ˆ̃N≺A∪dU , ˆ̃N≺QU , ˆ̃N≺Q∪dU ,
and Ude = {xq1 , xq2 , . . . , xqn′ };

Output: A new reduct RedU ′ on U − Ude.

1: Delete object set U ′ ← U − Ude;
2: Update the diagonal matrices ˆ̃N≺AU →

ˆ̃N≺AU ′ ,
ˆ̃N≺A∪dU →

ˆ̃N≺A∪dU ′ ,ˆ̃N≺QU →
ˆ̃N≺QU ′ ,

ˆ̃N≺Q∪dU →
ˆ̃N≺Q∪dU ′ by Proposition 5.2;

3: Calculate the new FDNCENE≺d|A(U
′) andNE≺d|Q (U

′) by Eq. (29);

4: if NE≺d|Q (U
′) > NE≺d|A(U

′) then
5: for each a ∈ (A− Q ) do
6: Calculate sigU ′

outer (a,Q , d) by Eq. (25), then construct a
descending sequence of attributes, and record the results
as {a′1, a

′

2, . . . , a
′

|A−Q |};
7: end for
8: while NE≺d|Q (U

′) > NE≺d|A(U
′) do

9: for h = 1 to |A− Q | do
10: Select Q ← Q ∪ {a′h} and calculate NE≺d|Q (U

′);
11: end for
12: end while
13: end if
14: for each a ∈ Q do
15: Compute FDNCE NE≺d|(Q−{a})(U

′) by Eq. (29);
16: if NE≺d|(Q−{a})(U

′) ≤ NE≺d|Q (U
′) then

17: Q ← Q − {a};
18: end if
19: end for
20: RedU ′ ← Q ;
21: return RedU ′ ;

Table 13
The summary of datasets.
No. Datasets Abbreviation Objects Attributes Classes

1 Wisconsin Prognostic
Breast Cancer

WPBC 198 32 2

2 Auto MPG Auto 398 7 3
3 Housing Hous 506 13 5
4 Australian Credit Aust 690 14 2
5 Credit Approval Cred 690 14 2
6 Wine Quality-red Wred 1599 11 10
7 Car Evaluation Car 1728 6 4
8 Cardiotocography Card 2126 21 3
9 Wine Quality-white Wite 4898 11 10

6. Experiments and analysis

In this section, we perform a series of experiments to test the
obustness of the proposed metric and evaluate the performance
f the proposed incremental feature selection algorithms. The
onfiguration of computer used for experiments is as follows. CPU
s Intel(R) Core(TM) i7-8700. Clock Speed is 3.20 GHz. Memory is
6.0 GB. Operation System is 64-bit Windows 10. The algorithms
re coded in Java and run in Java platform. The code of algorithms
an be downloaded from the GitHub homepage.1 We downloaded
ine datasets from the UCI machine learning repository, and a
ummary of them is provided in Table 13.
However, very few real interval-valued datasets are publicly

vailable. In [5,6,36,54,58–63], the interval-value datasets are

1 https://github.com/binbinsang/Experimental-source-code.git.
13
obtained through different data preprocessing methods, which
convert the single-value datasets into the interval-value datasets.
Before performing the experiments, we use a similar data pre-
processing method to obtain the interval-valued datasets. First,
for categorical attributes, we use integers instead of symbols, and
define order relation of the integers in accordance with semantics
of the attributes. Then, these datasets are normalized using

v̂ik =
vik −min(Vak )

max(Vak )−min(Vak )
. (32)

inally, this normalized single value v̂ik is constructed as an
interval number [v̂l

ik, v̂
r
ik], where

v̂l
ik =(1− α)× v̂ik, (33)

v̂r
ik =(1+ α)× v̂ik. (34)

In Eqs. (33) and (34), the α represents error precision. In this
experiment, we stipulate that α = 0.05 and if v̂r

ik > 1, then
v̂r
ik = v̂ik.

6.1. Evaluation on the robustness of metric FDNCE in IvODS

In this subsection, we randomly select four datasets in Ta-
ble 13 to test the robustness of metrics DCE, FDCE, and FDNCE
in IvODS. For each preprocessed dataset, we choose different
proportions of data to add random noise. These datasets with
noise are obtained by

[v̂l
ik, v̂

r
ik] =

{
[v̂l

ik + r lik, v̂
r
ik + r rik], 0 ≤ (v̂l

ik + r lik) ≤ (v̂r
ik + r rik) ≤ 1;

[v̂l
ik, v̂

r
ik], otherwise,

(35)

where r lik, r
r
ik ∈ [0, 1]. Then, these three metrics are calculated

for different levels noise datasets. The experimental results are
shown in Fig. 2.

From Fig. 2, we can find that the fluctuation of FDNCE curve
is relatively small as the noise level increases. Moreover, in each
sub-figure, we also show the standard deviation (STDEV) of the
calculation result of each metric. From these histograms, we can
intuitively observe that the STDEV of FDNCE is minimal. There-
fore, we can conclude that the robustness of metric FDNCE is the
best one compared with other two metrics.

6.2. Performance evaluations of incremental algorithms IFSA-IvO
and IFSD-IvO

The performance of the proposed incremental algorithms are
evaluated from the perspective of effectiveness and efficiency. In
this subsection, we introduce the compared algorithms, experi-
mental design, and experimental results and analysis.

6.2.1. Compared algorithms
Four feature selection (attribute reduction) algorithms for

interval-valued data are adopted as comparison algorithms, as
shown below.

• Algorithm DRSQR. Du et al. proposed a DRSA based
QuickReduct algorithm for ordered data [64]. We replace
the single-valued dominance relation in this algorithm with
the interval-valued dominance relation (as indicated by
Definition 2.4), and then naturally use this algorithm for
attribute reduction of interval-valued ordered data.
• Algorithm RDAR. Dai et al. proposed several uncertainty

measures for interval-valued data, where the measure θ−

rough degree is used in the attribute reduction algorithm of
interval-valued data [30]. This algorithm is written as RDAR,

where the parameter θ is preset to 0.5.
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Fig. 2. The comparison of robustness of metrics at different noise levels.

Fig. 3. Experimental operations for evaluating the effectiveness of incremental algorithms.
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Fig. 4. Experimental schemes of evaluating the efficiency of incremental algorithms.
• Algorithm REAR. Xie et al. presented a new uncertainty
measure for interval-valued data, called θ−rough entropy,
which is used in the attribute reduction algorithm of
interval-valued data [33]. This algorithm is written as REAR,
where the parameter θ is preset to 0.4.
• Algorithm HFS-IvO. It is a FDNCE based heuristic feature

selection algorithm for interval-valued ordered data given
in Algorithm 1.

6.2.2. Experimental design
In this experiment, the classification accuracy of the reduct

generated by the feature selection algorithm is used to show
the effectiveness of this algorithm, the time and speed-up ratio
calculated by the feature selection algorithm show the efficiency
of this algorithm.

(1) Evaluation indexes
The evaluation index of effectiveness is classification accuracy,

and that of efficiency is calculation time and speed-up ratio.
Currently, most classifiers cannot handle interval-valued data

[30]. For this purpose, Dai et al. extended two commonly used
classifiers Probabilistic Neural Network (PNN) and K-Nearest
Neighbor (KNN), which are used to measure the classification
effect of the attribute subsets of interval-valued data [30]. In this
experiment, we use these two classifiers to evaluate the effec-
tiveness of feature selection algorithms. 10-fold cross-validation
is adopted in classification. Here, the percentage of correctly
classified instances is used as an evaluation indicator, and it can
be obtained via running classifiers. Moreover, the speed-up ratio
15
is calculated as S = TComparison−algorithm/TIncremental−algorithm, where T∗
is the computational time of ∗ algorithm.

(2) The scheme of effectiveness evaluations
In order to compare the effectiveness of the two incremen-

tal algorithms with the other four algorithms, we design the
corresponding experimental schemes as shown in Fig. 3, where
Figs. 3(a) & 3(b) is used to compare the incremental algorithm
IFSA-IvO & IFSD-IvO, respectively, with the other four algorithms.

(3) The scheme of efficiency evaluations
We record the calculation time and speed-up ratio of feature

selection algorithms in the dynamic adding and deleting data
environments, respectively. The less calculation time of an algo-
rithm, the faster the calculation speed is, which means that the
efficiency of the algorithms is higher, and vice versa. Therefore,
the efficiency of algorithms are measured by comparing the cal-
culation time of the algorithms. The experimental schemes are
shown in Fig. 4.

6.2.3. Experimental results and analysis
(1) Experimental results of effectiveness evaluation
The experimental results evaluating the effectiveness of the in-

cremental algorithms and the other four algorithms are provided
in Tables 14 and 15. In Tables 14 and 15, the ‘‘raw’’ is the classifi-
cation accuracy of the raw attribute set, the optimal classification
accuracies are in boldface, and the number in bracket after each
classification accuracy result indicates the size of the generated
reduct.
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Fig. 5. The computational time of different algorithms versus different ratios of adding objects.
able 14
he comparison of classification accuracy of different algorithms when adding objects (%).
Datasets PNN KNN

All attributes DRSQR RDAR REAR HFS-IvO IFSA-IvO All attributes DRSQR RDAR REAR HFS-IvO IFSA-IvO

WPBC 46.70 48.73 (12) 47.72 (2) 47.72 (4) 45.69 (6) 53.30 (8) 50.76 50.25 (12) 51.33 (2) 49.75 (4) 45.69 (6) 52.28 (8)
Auto 67.00 63.48 (5) 66.75 (5) 66.00 (4) 64.23 (4) 64.23 (4) 72.80 70.28 (5) 66.00 (5) 71.54 (4) 74.81 (4) 74.81 (4)
Hous 43.37 43.96 (10) 38.42 (4) 43.76 (7) 46.12 (2) 46.12 (2) 66.93 67.72 (10) 64.16 (4) 67.92 (7) 69.77 (2) 69.77 (2)
Aust 84.33 84.33 (12) 73.15 (4) 84.76 (7) 84.62 (7) 85.34 (5) 83.16 84.18 (12) 70.10 (4) 83.89 (7) 82.87 (7) 80.84 (5)
Cred 60.96 61.83 (12) 43.25 (4) 61.68 (7) 40.06 (3) 62.39 (7) 67.20 66.62 (12) 64.44 (4) 68.21 (7) 60.81 (3) 68.36 (7)
Wred 22.59 22.59 (10) 23.19 (9) 22.63 (9) 20.84 (2) 23.77 (1) 50.69 49.19 (10) 47.87 (9) 22.63 (9) 46.06 (2) 46.31 (1)
Car 47.83 47.83 (5) 36.13 (2) 47.65 (3) 70.01 (1) 79.17 (1) 67.17 67.75 (5) 69.89 (2) 67.69 (3) 70.01 (1) 79.17 (1)
Card 76.60 45.76 (13) 66.85 (6) 77.12 (11) 80.04 (3) 80.74 (4) 87.10 83.95 (13) 86.16 (6) 87.01 (11) 86.35 (3) 88.75 (4)
Wite 54.25 54.89 (7) 51.90 (5) 45.41 (4) 47.86 (5) 55.13 (7) 48.74 48.81 (7) 48.03 (5) 48.41 (4) 46.62 (5) 49.40 (7)
From Tables 14 and 15, we find that for most datasets, the
lassification effect of the proposed incremental algorithms are
ot only slightly higher than the overall attribute set, but also
lightly higher than the other four comparison algorithms. From
he perspective of the size of the reduct, the size of the reducts
enerated by the proposed incremental algorithms and the al-
orithm HFS-IvO are equal or very close in most datasets, and
he size of the reducts generated by the incremental algorithms
s smaller than that of the algorithms DRSQR, RDAR, and REAR
n most datasets. Therefore, it can be concluded that the pro-
osed incremental algorithms can effectively delete redundant
16
attributes and improve classification accuracy. This fully shows
that our incremental algorithms are effective.

(2) Experimental results of efficiency evaluation
First, we compare the computational efficiency of the incre-

mental algorithm IFSA-IvO with the other four comparison algo-
rithms. The detailed experimental operation is shown in Fig. 4(a),
and the experimental results are shown in Figs. 5 and 6.

From Fig. 5, we find that for most datasets, the computational
time of IFSA-IvO algorithm is less than that of other four algo-
rithms. In particular, for all datasets, the calculation time of the
algorithm IFSA-IvO is significantly lower than that of algorithms
DRSQR and HFS-IvO. Furthermore, as the size of the added object
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Fig. 6. The speed-up ratios that algorithm IFSA-IvO relates to different algorithms.
Table 15
The comparison of classification accuracy of different algorithms when deleting objects (%).
Datasets PNN KNN

All attributes DRSQR RDAR REAR HFS-IvO IFSD-IvO All attributes DRSQR RDAR REAR HFS-IvO IFSD-IvO

WPBC 54.55 47.47 (11) 50.51 (2) 48.48 (4) 57.58 (1) 57.58 (1) 58.59 51.52 (11) 57.58 (2) 48.48 (4) 58.59 (1) 58.59 (1)
Auto 73.37 74.87 (5) 77.89 (1) 72.86 (4) 68.34 (1) 78.89 (2) 73.37 72.36 (5) 70.85 (1) 73.37 (4) 68.34 (1) 73.87 (2)
Hous 34.39 35.97 (9) 25.30 (4) 34.39 (7) 34.78 (9) 37.57 (7) 62.45 64.03 (9) 64.03 (4) 63.64 (7) 62.45 (9) 67.98 (7)
Aust 84.35 85.80 (11) 73.91 (4) 81.74 (6) 84.93 (13) 85.22 (7) 83.19 84.35 (11) 68.99 (4) 82.03 (6) 84.06 (13) 83.19 (7)
Cred 59.13 61.74 (12) 56.81 (4) 55.65 (6) 46.96 (2) 46.96 (2) 62.32 62.03 (12) 60.87 (4) 56.81 (6) 45.80 (2) 45.80 (2)
Wred 55.52 56.27 (10) 49.26 (3) 55.38 (1) 56.27 (7) 56.65 (6) 53.82 53.32 (10) 49.31 (3) 50.38 (1) 53.44 (7) 54.82 (6)
Car 64.47 64.00 (3) 75.00 (2) 64.12 (3) 58.10 (4) 79.17 (1) 72.22 79.17 (3) 78.94 (2) 72.69 (3) 79.17 (4) 79.17 (1)
Card 76.08 45.76 (12) 62.15 (7) 74.01 (10) 67.70 (6) 67.70 (6) 80.41 77.87 (12) 83.15 (7) 81.17 (10) 87.38 (6) 87.38 (6)
Wite 54.13 54.09 (7) 56.00 (2) 55.57 (1) 57.00 (2) 57.00 (2) 47.49 48.00 (7) 43.00 (2) 40.57 (1) 43.16 (2) 43.16 (2)
set increases, the growth trend of the time consumed using IFSA-
IvO algorithm is slower than that using other four algorithms.
Moreover, Fig. 6 shows that the incremental algorithm is at least
nearly one times or more faster than other four algorithms on all
the datasets. For most datasets, the algorithm IFSA-IvO is on av-
erage four times faster than the other four algorithms. Therefore,
the experimental results prove that the incremental algorithm
IFSA-IvO can efficiently obtain a reduct when adding objects.

Second, we compare the computational efficiency of the incre-
ental algorithm IFSD-IvO with the other four comparison algo-

ithms. The detailed experimental operation is shown in Fig. 4(b),
nd the experimental results are shown in Figs. 7 and 8.
Fig. 7 shows that on each dataset, the calculation time of these

ive algorithms decreases as the amount of deleted data increases,
here the running time of incremental algorithm IFSD-IvO is the
17
least one. The time consumed by these five algorithms is roughly
arranged in descending order as IFSD-IvO ≺ RDAR ≺ REAR ≺
HFS-IvO ≺ DRSQR, which can be viewed from Fig. 8. In Fig. 8,
for most datasets, the calculation speed of algorithm IFSD-IvO
is several times of other algorithms. In particular, Figs. 8(a) and
8(d) show that algorithm IFSD-IvO is dozens of times faster than
algorithms DRSQR and HFS-IvO. Accordingly, we can conclude
that the incremental algorithm IFSD-IvO can efficiently obtain a
reduct when deleting objects.

(3) Summary
After experimental analysis, it can be concluded that incre-

mental algorithms IFSA-IvO and IFSD-IvO not only decreases
the computational time, but also improve the classification per-
formance. Accordingly, compared with other four algorithms,
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Fig. 7. The computational time of different algorithms versus different ratios of deleting objects.
ncremental algorithms can quickly generate a satisfying reduct
hen multiple objects are added to or deleted from an IvODS.

. Conclusion and future work

In this study, we propose incremental feature selection meth-
ds based on FDNRS for dynamic interval-valued ordered data.
he main works are as follows: (1) We propose a FDNRS model
or IvODS and present its relevant properties. (2) Based on the
roposed model, a robust conditional entropy (i.e., FDNCE) is
roposed for attribute reduction of IvODS. (3) For dynamically
dding objects to or deleting objects from an IvODS, we de-
elop two incremental feature selection algorithms accordingly.
xperiments are performed on nine public datasets. The result
f the experiment proves the robustness of the metric FDNCE
nd the effectiveness and efficiency of the proposed incremental
lgorithms.
This work studies incremental feature selection algorithms

or dynamic interval-value ordered data with object set changes.
evertheless, dynamic data with the variation of multi-sided
s closer to reality, which inspire our further research. In fu-
ure work, we will investigate incremental feature selection ap-
roaches for dynamic IvODS with the variation of multi-sided.
18
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